On certain nights, an arresting green line pierces the sky above NASA's Goddard Space Flight Center in Greenbelt , Md. It's a laser directed at the moon, visible when the air is humid. No, we're not repelling an invasion. Instead, we're tracking our own spacecraft.
The first laser ranging effort to track a spacecraft beyond low-Earth orbit on a daily basis produces distance measurements accurate to about four inches (10 centimeters). For comparison, the microwave stations tracking LRO measure its range to a precision of about 65 feet (20 meters).
"Current lunar maps are not as accurate as we'll need to return people safely to the moon," said Ronald Zellar of NASA Goddard, team lead for the LRO laser ranging system. "In order to make an accurate map, first you need to know where you are. Knowing the precise range to LRO is necessary for its instruments to produce much more accurate maps, with errors reduced to the size of humans or rovers."
"A further benefit of laser ranging to LRO is that it can improve knowledge of the moon's orientation and gravity, which are central to understanding its interior structure and to precision navigation," said Gregory Neumann, a Geophysicist at NASA Goddard.
Engineers use a telescope at the ground station on the Goddard campus to direct laser pulses toward LRO. The range to LRO is calculated by measuring how long it took the laser to reach the spacecraft.
The laser ranging to LRO is one way, meaning that the laser is directed at LRO, which records the time of arrival and sends the data back to ground stations on Earth by its radio telemetry link. This is the first time repeated, one-way tracking has been used for spacecraft ranging. Typical satellite laser ranging, used for spacecraft in low-Earth orbit, is two way, meaning the laser is simply reflected off the spacecraft and the time of flight recorded when it returns to the ground.
The advantage of LRO's one-way system is that a less expensive, lower-power laser system can be used -- especially important since the distance to LRO is hundreds of times greater than that to most Earth-orbiting spacecraft. Also, only a small receiver is needed on the spacecraft instead of a large retro-reflector array.
0 comments:
Post a Comment