Hubble Shows Black Hole Booted Star From Milky Way

A hundred million years ago, a triple-star system was traveling through the bustling center of our Milky Way galaxy when it made a life-changing misstep. The trio wandered too close to the galaxy's giant black hole, which captured one of the stars and hurled the other two out of the Milky Way. Adding to the stellar game of musical chairs, the two outbound stars merged to form a super- hot, blue star.

This story may seem like science fiction, but astronomers using NASA's Hubble Space Telescope say it is the most likely scenario for a so-called hypervelocity star, known as HE 0437-5439, one of the fastest ever detected. It is blazing across space at a speed of 1.6 million miles (2.5 million kilometers) an hour, three times faster than our Sun's orbital velocity in the Milky Way. Hubble observations confirm that the stellar speedster hails from the Milky Way's core, settling some confusion over where it originally called home.

Most of the roughly 16 known hypervelocity stars, all discovered since 2005, are thought to be exiles from the heart of our galaxy. But this Hubble result is the first direct observation linking a high-flying star to a galactic center origin.

"Using Hubble, we can for the first time trace back to where the star comes from by measuring the star's direction of motion on the sky. Its motion points directly from the Milky Way center," says astronomer Warren Brown of the Harvard- Smithsonian Center for Astrophysics in Cambridge, Mass., a member of the Hubble team that observed the star. "These exiled stars are rare in the Milky Way's population of 100 billion stars. For every 100 million stars in the galaxy lurks one hypervelocity star."

The movements of these unbound stars could reveal the shape of the dark matter distribution surrounding our galaxy. "Studying these stars could provide more clues about the nature of some of the universe's unseen mass, and it could help astronomers better understand how galaxies form," says team leader Oleg Gnedin of the University of Michigan in Ann Arbor. "Dark matter's gravitational pull is measured by the shape of the hyperfast stars' trajectories out of the Milky Way."

The stellar outcast is already cruising in the Milky Way's distant outskirts, high above the galaxy's disk, about 200,000 light-years from the center. By comparison, the diameter of the Milky Way's disk is approximately 100,000 light- years. Using Hubble to measure the runaway star's direction of motion and determine the Milky Way's core as its starting point, Brown and Gnedin's team calculated how fast the star had to have been ejected to reach its current location.

"The star is traveling at an absurd velocity, twice as much as the star needs to escape the galaxy's gravitational field," explains Brown, a hypervelocity star hunter who found the first unbound star in 2005. "There is no star that travels that quickly under normal circumstances-something exotic has to happen."

There's another twist to this story. Based on the speed and position of HE 0437- 5439, the star would have to be 100 million years old to have journeyed from the Milky Way's core. Yet its mass - nine times that of our Sun - and blue color mean that it should have burned out after only 20 million years - far shorter than the transit time it took to get to its current location.

The most likely explanation for the star's blue color and extreme speed is that it was part of a triple-star system that was involved in a gravitational billiard-ball game with the galaxy's monster black hole. This concept for imparting an escape velocity on stars was first proposed in 1988. The theory predicted that the Milky Way's black hole should eject a star about once every 100,000 years.

Brown suggests that the triple-star system contained a pair of closely orbiting stars and a third outer member also gravitationally tied to the group. The black hole pulled the outer star away from the tight binary system. The doomed star's momentum was transferred to the stellar twosome, boosting the duo to escape velocity from the galaxy. As the pair rocketed away, they went on with normal stellar evolution. The more massive companion evolved more quickly, puffing up to become a red giant. It enveloped its partner, and the two stars spiraled together, merging into one superstar - a blue straggler.

  • Digg
  • StumbleUpon
  • Reddit
  • RSS