NASA Railroad Keeps Shuttle's Boosters on the Right Track

For nearly three decades, the NASA Railroad at Kennedy Space Center in Florida has kept the space shuttle's solid rocket boosters on track.

The mighty boosters fly in pairs and generate a combined 5.3 million pounds of thrust at ignition, pushing the shuttle assembly past the grip of Earth's gravity during the critical first two minutes of flight. Stacked within each of the 15-story-tall, reusable boosters are four solid rocket motor segments packed with a hard, rubbery cocktail of propellants.

Getting the 12-foot-wide, 150-ton segments to the launch site is only possible by rail. The segments are loaded by manufacturer ATK at a plant in Promontory, Utah, then shipped in customized train cars on a seven-day trip to Kennedy.

Every single booster segment used in the Space Shuttle Program has arrived at Kennedy the same way.

"The railroad is a lifeline in and out of this center," said Chris Bryant, a locomotive engineer and mechanic with URS Corp. Bryant is one of 11 team members in the URS railroad shop who operate and maintain the railroad's cars, tracks and facilities.

At the Wilson's Corners junction at the northern end of the space center, the NASA Railroad splits into two nine-mile stretches of track. Kennedy's mainline runs south, past the Vehicle Assembly Building and other Launch Complex 39 facilities before reaching the center's Industrial Area. To the east, a second line of track extends to the Cape Canaveral Air Force Station.

Each incoming shuttle-booster segment rests on a cradle in a custom-built railcar. A clamshell-like cover, hinged at the top, protects the hardware throughout the journey. Fully loaded, a single segment car weighs 513,000 pounds.

The cross-country route involves commercial rail companies such as Union Pacific, Kansas City Southern, Norfolk Southern, CSX and Florida East Coast Railway (FEC). FEC handles the final leg of the trip, pulling the hazardous cargo into NASA's Jay Jay railroad yard north of Titusville, Fla.

That's when the Kennedy railroad crew takes charge, starting with a thorough inspection.

"When loads come in, you have to inspect every car," explains Will Eriksen, part of the URS team and a three-decade veteran of the Kennedy railroad operation. "You want to make sure you're not going to drag anything in that's going to cause a hazard to the commodity."

Although the train has to traverse a drawbridge spanning the Indian River, the bridge is not strong enough to hold a train with so many heavy cars. The solution: Empty "spacer" cars are added between the segments to distribute the weight over the individual spans of the bridge, so the weight on the bridge is manageable.

The NASA locomotive pulls the train across the river to Wilson Yard, just west of Wilson's Corners junction, where the spacer cars are removed.

"Once we're done and have (the segment cars) all gathered up, we bring them into Suspect Siding," Bryant says, referring to an isolated staging area on the northeast side of the Shuttle Landing Facility. The segments stay there until ATK technicians are ready for them in the booster Rotation, Processing and Surge Facility, where they are rotated to vertical and prepared for stacking.

Although the Kennedy rails are built to withstand mainline track speeds of 60 mph, when the booster segments arrive at Kennedy, the weight and the danger involved require more caution.

"Our track speed is 25 miles an hour -- and normally, we don't reach that," Bryant says. "Normally, our speed is no more than 10 to 15 miles an hour. When we come up to crossings, sometimes it's even slower than that."

"When we're hauling in, we're hauling 4 to 5 million pounds of explosives," Bryant points out. "Through the crossings, too. It's not something to sneeze about, you know."

Kennedy's rail system was activated in 1963 when FEC added a 7.5-mile connection from its mainline across the Indian River to the space center. At that time, the spaceport was in the midst of a construction boom as facilities were built for the Apollo program, and the railroad provided a means of hauling heavy building materials into the center.

"The railroad was built to accommodate the freight cars of that time, which were mostly 50 and 70 ton capacity. It was a very adequate railroad for the cars of the time," says David Hoffman, who managed the NASA Railroad at Kennedy for 13 years until his retirement in 1996.

But by the time the Space Shuttle Program was beginning, the railroad was in sad shape after years of exposure to the salt air and moist, tropical climate. The wood crossties were rotting, rust had eaten away at the hardware, and the rail itself needed to be strengthened. FEC was contracted to upgrade the system.

"We put in the heavy rail (with) welded joints, which are stronger than a bolted joint, and (requires) virtually no maintenance," Hoffman recalls. "And we went to the concrete crossties. You're looking at a 50 or 60 year life of the crosstie instead of 10 or 12 or so for wood in Kennedy's subtropical climate, which means we put it in place and basically walk away and forget it. A lot of that track out there has been in place now since the late 80s, and it has not been touched except for weed spray."

NASA bought that portion of the railroad line from FEC in 1983, two years after the shuttle began flying, and today the skilled Kennedy crew maintains the system.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

'There's the Orbiter, Go Put a Motor in It'

The first time anyone installed a main engine in a space shuttle in 1980, it took three days and prompted a series of changes that quickly became standard practice.

"The first one, it was, 'There's the orbiter, go put a motor in it,'" recalled Robert "Bob" Rysdyk, a lead engine technician for Pratt & Whitney Rocketdyne who helped install that first engine.

There were laser instruments galore marking off all sorts of measurements as technicians tried to set the first engine carefully inside shuttle Columbia's aft compartment.

Rysdyk credits engineer Roy Austin with working out a simple solution.

"He actually went down to the janitor's closet and cut two broomsticks the same length and used those to align the pump to the orbiter," Rysdyk said.

Thirty years and more than 130 missions later, Rysdyk was part of the team that installed what’s expected to be the last set of main engines in a shuttle, this time in Atlantis. It took less than four hours and the team used the same measurements that Austin came up with when he cut the broom handles.

Two years before that first installation, Rysdyk said he had no space program ambitions.

"I was working on four-cylinder airplane engines that would fit on a desk," Rysdyk said. "I got recruited from my next door neighbor who was an engineer out here in '79. Literally, my application was a sheet of notebook paper with my name and what I did on it. I got a job interview and hired within a week."

Michael Kerasotis, a quality inspector with Pratt & Whitney Rocketdyne, came to Kennedy in 1979 as part of a summer program. He started working on the shuttle's tiles but migrated to engine work within a couple years of Columbia's first launch.

"This has been the longest summer ever," Kerasotis joked. "We got a pass to come out here and see (the shuttle). I never thought I'd be working on it."

One of the most carefully choreographed aspects of preparing a shuttle for launch involves placing three 7,700 pound main engines into the back of the spacecraft.

It takes eight people and a lot of patience.

The machinery involved starts with a cone-shaped fitting specially made to handle a main engine. Because the engines face slightly up toward the rudder, they have to be installed at an angle. So the fitting is welded to a sliding rack. The rack and fitting are, in turn, positioned on the front of a huge forklift known as the "Hyster" for the engine installation.

The engine installer, forklift and the technicians who oversee an installation preach careful control anytime an engine is on the move.

The installer has seen very few changes since it was brought to Kennedy in the late 70s, Rysdyk said.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Scientists Theorize Final Growth Spurt for Planets

A team of NASA-funded researchers has unveiled a new theory that contends planets gained the final portions of their mass from a limited number of large comet or asteroid impacts more than 4.5 billion years ago. These impacts added less than one percent of the planets' mass.

Scientists hope the research not only will provide a better historical picture of the birth and evolution of Earth, the moon and Mars, but also allow researchers to better explore what happened in our solar system's beginning and middle stages of planet formation.

“No one has a model of precisely what happened at the end of planet formation—we’ve had a broad idea—but variables such as impactor size, the approximate timing of the impacts, and how they affect the evolution of the planets are unknown,” said William Bottke, principal investigator from the Southwest Research Institute (SWRI) in Boulder, Colo. “This research hopefully provides better insights into the early stages of planet formation.”

The team used numerical models, lunar samples returned by Apollo astronauts and meteorites believed to be from Mars to develop its findings. The scientists examined the abundances of elements such as gold and platinum in the mantles, or layers beneath the crust, of Earth, the moon and Mars. Consistent with previous studies, they concluded the elements were added by a process called late accretion during a planet's final growth spurt.

"These impactors probably represent the largest objects to hit Earth since the giant impact that formed our moon," Bottke said. “They also may be responsible for the accessible abundance of gold, platinum, palladium, and other important metals used by our society today in items ranging from jewelry to our cars’ catalytic convertors.”

The results indicate the largest Earth impactor was between 1,500 - 2,000 miles in diameter, roughly the size of Pluto. Because it is smaller than Earth, the moon avoided such enormous projectiles and was only hit by impactors 150 - 200 miles wide. These impacts may have played important roles in the evolution of both worlds. For example, the projectiles that struck Earth may have modified the orientation of its spin axis by 10 degrees, while those that hit the moon may have delivered water to its mantle.

"Keep in mind that while the idea the Earth-moon system owes its existence to a single, random event was initially viewed as radical, it is now believed that large impacts were commonplace during the final stages of planet formation,’ Bottke said. “Our new results provide additional evidence that the effects of large impacts did not end with the moon-forming event."

The paper, "Stochastic Late Accretion to the Earth, Moon, and Mars," was published in the Dec. 9 issue of Science. It was written by Bottke and David Nesvorny of SWRI; Richard J. Walker of the University of Maryland; James Day of the University of Maryland and Scripps Institution of Oceanography, University of California, San Diego; and Linda Elkins-Tanton of the Massachusetts Institute of Technology. The research is funded by the NASA Lunar Science Institute (NLSI) at the agency's Ames Research Center in Moffett Field, Calif.

The NLSI is a virtual organization that enables collaborative, interdisciplinary research in support of NASA lunar science programs. The institute uses technology to bring scientists together around the world and comprises competitively selected U.S. teams and several international partners. NASA's Science Mission Directorate and the Exploration Systems Mission Directorate at the agency's Headquarters in Washington, funds the institute, which is managed by a central office at Ames.

For more information on NLSI, visit:

http://lunarscience.nasa.gov

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Site List Narrows For NASA's Next Mars Landing

Four intriguing places on Mars have risen to the final round as NASA selects a landing site for its next Mars mission, the Mars Science Laboratory.

The agency had a wider range of possible landing sites to choose from than for any previous mission, thanks to the Mars Science Laboratory's advanced technologies, and the highly capable orbiters helping this mission identify scientifically compelling places to explore.

Mars Science Laboratory project leaders at NASA's Jet Propulsion Laboratory, Pasadena, Calif., chose the four this month, after seeking input from international Mars experts and from engineers working on the landing system and rover capabilities.

The sites, alphabetically, are: Eberswalde, where an ancient river deposited a delta in a possible lake; Gale, with a mountain of stacked layers including clays and sulfates; Holden, a crater containing alluvial fans, flood deposits, possible lake beds and clay-rich deposits; and Mawrth, which shows exposed layers containing at least two types of clay.

"All four of these sites would be great places to use our roving laboratory to study the processes and history of early Martian environments and whether any of these environments were capable of supporting microbial life and its preservation as biosignatures," said John Grotzinger of the California Institute of Technology, Pasadena. He is the project scientist for the Mars Science Laboratory.

The mission's capabilities for landing more precisely than ever before and for generating electricity without reliance on sunshine have made landing sites eligible that would not have been acceptable for past Mars missions. During the past two years, multiple observations of dozens of candidate sites by NASA's Mars Reconnaissance Orbiter have augmented data from earlier orbiters for evaluating sites' scientific attractions and engineering risks.

JPL is assembling and testing the Mars Science Laboratory spacecraft for launch in fall 2009. Paring the landing-site list to four finalists allows the team to focus further on evaluating the sites and planning the navigation. The mission plan calls for the rover to spend a full Mars year (23 months) examining the environment with a diverse payload of tools.

After evaluating additional Mars orbiter observations of the four sites, NASA will hold a fourth science workshop about the candidates in the spring and plans to choose a final site next summer. Three previous landing-site science workshops for Mars Science Laboratory, in 2006, 2007 and two months ago, drew participation of more than 100 Mars scientists and presentations about more than 30 sites. The four sites rated highest by participants in the latest workshop were the same ones chosen by mission leaders after a subsequent round of safety evaluations and analysis of terrain for rover driving. One site, Gale, had been a favorite of scientists considering 2004 landing sites for NASA's Spirit and Opportunity rovers, but was ruled out as too hazardous for the capabilities of those spacecraft.

"Landing on Mars always is a risky balance between science and engineering. The safest sites are flat, but the spectacular geology is generally where there are ups and downs, such as hills and canyons. That's why we have engineered this spacecraft to make more sites qualify as safe," said JPL's Michael Watkins, mission manager for the Mars Science Laboratory. "This will be the first spacecraft that can adjust its course as it descends through the Martian atmosphere, responding to variability in the atmosphere. This ability to land in much smaller areas than previous missions, plus capabilities to land at higher elevations and drive farther, allows us consider more places the scientists want to explore."

For their Mars landings in 2004, Spirit and Opportunity needed safe target areas about 70 kilometers (about 40 miles) long. Mars Science Laboratory is designed to hit a target area roughly 20 kilometers (12 miles) in diameter. Also, a new "skycrane" technology to lower the rover on a tether for the final touchdown can accommodate more slope than the airbag method used for Spirit and Opportunity. In addition, a radioisotope power supply, like that used by Mars Viking landers in the 1970s, will enable year-round operation farther from the equator than the solar power systems of more recent missions.

Gale is near the equator, Eberswalde and Holden are farther south, and Mawrth is in the north.

As a clay-bearing site where a river once flowed into a lake, Eberswalde Crater offers a chance to use knowledge that oil industry geologists have accumulated about locations of the most promising parts of a delta to look for any concentrations of carbon chemistry that is crucial to life.

The mountain inside Gale Crater could provide a route for the rover to drive up a 5-kilometer (3-mile) sequence of layers, studying a transition from environments that produced clay deposits near the bottom to later environments that produced sulfate deposits partway up.

Running water once carved gullies and deposited sediments as alluvial fans and catastrophic flood deposits in Holden Crater, a site that may also present the chance to evaluate layers deposited in a lake. Exploration of key features within this target area would require drives to the edge of a broad valley, and then down into the valley.

Mawrth Valley is an apparent flood channel near the edge of vast Martian highlands. It holds different types of clays in clearly layered context, offering an opportunity for studying the changes in wet conditions that produced or altered the clays. The clay signatures are stronger than at the other sites, and this is the only one of the four for which the science target is within the landing area, not nearby.

JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory for the NASA Science Mission Directorate, Washington. For additional information about the mission, see http://mars.jpl.nasa.gov/msl.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Mars Rover Construction Webcam Tops Million Viewers

More than one million people have watched assembly and testing of NASA's next Mars rover via a live webcam since it went online in October.

NASA's Mars Science Laboratory, also known as the Curiosity rover, is being tested and assembled in a clean room at the agency's Jet Propulsion Laboratory in Pasadena, Calif. The webcam, affectionately dubbed "Curiosity Cam," shows engineers and technicians clad in head-to-toe white smocks working on the rover.

Metrics from the webcam's hosting platform, Ustream, showed more than one million unique viewers spent more than 400,000 hours watching Curiosity Cam between Oct. 21 and Nov. 23. There have been more than 2.3 million viewer sessions.

The camera is mounted in the viewing gallery of the Spacecraft Assembly Facility at JPL. While the gallery is a regular stop on JPL's public tour, Curiosity Cam allows visitors from around the world to see NASA engineers at work without traveling to Pasadena.

Viewers from Chile, Japan, Turkey, Spain, Mexico and the United Kingdom have sent good wishes and asked questions in the chat box that accompanies the Curiosity Cam webstream. At scheduled times, viewers can interact with each other and JPL staff. The chat schedule is updated weekdays at http://www.ustream.tv/nasajpl.

Months of assembly and testing remain before the car-sized rover is ready for launch from Cape Canaveral, Fla. The rover and spacecraft components will ship to NASA's Kennedy Space Center in Florida next spring. The launch will occur between Nov. 25 and Dec. 18, 2011. Curiosity will arrive on Mars in August 2012.

The rover is one of the most technologically challenging interplanetary missions ever designed. Curiosity is engineered to drive longer distances over rougher terrain than previous Mars rovers. It will carry a science payload 10 times the mass of instruments on NASA's Spirit and Opportunity rovers. Curiosity will investigate whether the landing region had environments favorable for supporting microbial life. It will also look for environments that have been favorable for preserving evidence about whether life existed.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Aids in Characterizing Super-Earth Atmosphere

A team of astronomers, including two NASA Sagan Fellows, has made the first characterizations of a super-Earth's atmosphere, by using a ground-based telescope.

A super-Earth is a planet up to three times the size of Earth and weighing up to 10 times as much. The findings, reported in the Dec. 2 issue of the journal Nature, are a significant milestone toward eventually being able to probe the atmospheres of Earth-like planets for signs of life.

The team determined the planet, GJ 1214b, is either blanketed with a thin layer of water steam or surrounded by a thick layer of high clouds. If the former, the planet itself would have an icy composition. If the latter, the planet would be rocky or similar to the composition of Neptune, though much smaller.

"This is the first super-Earth known to have an atmosphere," said Jacob Bean, a NASA Sagan Fellow and astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But even with these new measurements, we can't say yet what that atmosphere is made of. This world is being very shy and veiling its true nature from us."

GJ 1214b, first discovered in December 2009, is 2.7 times the size of Earth and 6.5 times as massive. Previous observations of the planet's size and mass demonstrated it has a low density for its size, leading astronomers to conclude the planet is some kind of solid body with an atmosphere.

The planet orbits close to its dim star, at a distance of 0.014 astronomical units. An astronomical unit is the distance between Earth and the sun, approximately 93 million miles. GJ 1214b circles too close to its star to be habitable by any life forms.

Bean and his team observed infrared light as the planet crossed in front of its star. During such transits, the star's light filters through the atmosphere. Gases absorb the starlight at particular wavelengths, leaving behind chemical fingerprints detectable from Earth. This same type of technique has been used to study the atmospheres of distant "hot Jupiters," or Jupiter-like planets orbiting close to their stars, and found gases like hydrogen, methane and sodium vapor.

In the case of the super-Earth, no chemical fingerprints were detected; however, this doesn't mean there are no chemicals present. Instead, this information ruled out some possibilities for GJ 1214b's atmosphere, and narrowed the scope to either an atmosphere of water steam or high clouds. Astronomers believe it's more likely the atmosphere is too thin around the planet to let enough light filter through and reveal chemical fingerprints.

"A steamy atmosphere would have to be very dense – about one-fifth water vapor by volume -- compared to our Earth, with an atmosphere that's four-fifths nitrogen and one-fifth oxygen with only a touch of water vapor," Bean said. "During the next year, we should have some solid answers about what this planet is truly like."

The team, which included Bean's co-authors -- Eliza Miller-Ricci Kempton, a NASA Sagan Fellow at the University of California in Santa Cruz, and Derek Homeier of the Institute for Astrophysics in Gottingen, Germany -- examined GJ 1214b using the ground-based Very Large Telescope at Paranal Observatory in Chile.

"This is an important step forward, narrowing our understanding of the atmosphere of this planet," said NASA Exoplanet Exploration Program Scientist Douglas Hudgins at NASA Headquarters in Washington. "Bizarre worlds like this make exoplanet science one of the most compelling areas in astrophysics today."

The Sagan Fellowship Program is administered by the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena. Its purpose is to advance the scientific and technical goals of NASA's Exoplanet Exploration Program. The program is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif. Caltech manages JPL for NASA.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Cassini Finds Warm Cracks on Enceladus

New images and data from NASA's Cassini spacecraft give scientists a unique Saturn-lit view of active fissures through the south polar region of Saturn's moon Enceladus. They reveal a more complicated web of warm fractures than previously thought.

The new images are available at: http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

Scientists working jointly with Cassini's composite infrared spectrometer and its high-resolution imaging camera have constructed the highest-resolution heat intensity maps yet of the hottest part of a region of long fissures spraying water vapor and icy particles from Enceladus. These fissures have been nicknamed "tiger stripes." Additional high-resolution spectrometer maps of one end of the tiger stripes Alexandria Sulcus and Cairo Sulcus reveal never-before-seen warm fractures that branch off like split ends from the main tiger stripe trenches. They also show an intriguing warm spot isolated from other active surface fissures.

"The ends of the tiger stripes may be the places where the activity is just getting started, or is winding down, so the complex patterns of heat we see there may give us clues to the life cycle of tiger stripes," said John Spencer, a Cassini team scientist based at Southwest Research Institute in Boulder, Colo.

The images and maps come from the Aug. 13, 2010, Enceladus flyby, Cassini's last remote sensing flyby of the moon until 2015. The geometry of the many flybys between now and 2015 will not allow Cassini to do thermal scans like these, because the spacecraft will be too close to scan the surface and will not view the south pole. This Enceladus flyby, the 11th of Cassini's tour, also gave Cassini its last look at any part of the active south polar region in sunlight.

The highest-resolution spectrometer scan examined the hottest part of the entire tiger stripe system, part of the fracture called Damascus Sulcus. Scientists used the scan to measure fracture temperatures up to190 Kelvin (minus 120 degrees Fahrenheit). This temperature appears slightly higher than previously measured temperatures at Damascus, which were around 170 Kelvin (minus 150 degrees Fahrenheit).

Spencer said he isn't sure if this tiger stripe is just more active than it was the last time Cassini's spectrometer scanned it, in 2008, or if the hottest part of the tiger stripe is so narrow that previous scans averaged its temperature out over a larger area. In any case, the new scan had such good resolution, showing details as small as 800 meters (2,600 feet), that scientists could see for the first time warm material flanking the central trench of Damascus, cooling off quickly away from the trench. The Damascus thermal scan also shows large variations in heat output within a few kilometers along the length of the fracture. This unprecedented resolution will help scientists understand how the tiger stripes deliver heat to the surface of Enceladus.

Cassini acquired the thermal map of Damascus simultaneously with a visible-light image where the tiger stripe is lit by sunlight reflecting off Saturn. The visible-light and thermal data were merged to help scientists understand the relationships between physical heat processes and surface geology.

"Our high-resolution images show that this section of Damascus Sulcus is among the most structurally complex and tectonically dynamic of the tiger stripes," said imaging science team associate Paul Helfenstein of Cornell University, Ithaca, N.Y. Some details in the appearance of the landforms, such as a peculiar pattern of curving striations along the flanks of Damascus, had not previously been noticed in ordinary sunlit images.

The day after the Enceladus flyby, Cassini swooped by the icy moon Tethys, collecting images that helped fill in gaps in the Tethys global map. Cassini's new views of the heavily cratered moon will help scientists understand how tectonic forces, impact cratering, and perhaps even ancient resurfacing events have shaped the moon's appearance.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. The composite infrared spectrometer team is based at NASA's Goddard Space Flight Center, Greenbelt, Md., where the instrument was built.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Cassini Returns Images of Bright Jets at Enceladus

NASA's Cassini spacecraft successfully dipped near the surface of Saturn's moon Enceladus on Nov. 30.

NASA's Cassini spacecraft successfully dipped near the surface of Saturn's moon Enceladus on Nov. 30. Though Cassini's closest approach took it to within about 48 kilometers (30 miles) of the moon's northern hemisphere, the spacecraft also captured shadowy images of the tortured south polar terrain and the brilliant jets that spray out from it.

Many of the raw images feature darkened terrain because winter has descended upon the southern hemisphere of Enceladus. But sunlight behind the moon backlights the jets of water vapor and icy particles. In some images, the jets line up in rows, forming curtains of spray.

The new raw images can be seen at http://saturn.jpl.nasa.gov/photos/raw/ .

The Enceladus flyby was the 12th of Cassini's mission, with the spacecraft swooping down around 61 degrees north latitude. This encounter and its twin three weeks later at the same altitude and latitude, are the closest Cassini will come to the northern hemisphere surface of Enceladus during the extended Solstice mission. (Cassini's closest-ever approach to Enceladus occurred in October 2008, when the spacecraft dipped to an altitude of 25 kilometers, or 16 miles.)

Among the observations Cassini made during this Enceladus flyby, the radio science subsystem collected gravity measurements to understand the moon's interior structure, and the fields and particles instruments sampled the charged particle environment around the moon.

About two days before the Enceladus flyby, Cassini also passed the sponge-like moon Hyperion, beaming back intriguing images of the craters on its surface. The flyby, at 72,000 kilometers (45,000 miles) in altitude, was one of the closest approaches to Hyperion that Cassini has made.

Scientists are still working to analyze the data and images collected during the flybys.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory manages the project for NASA's Science Mission Directorate in Washington. The Cassini orbiter was designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Aids in Characterizing Super-Earth Atmosphere

A team of astronomers, including two NASA Sagan Fellows, has made the first characterizations of a super-Earth's atmosphere, by using a ground-based telescope. A super-Earth is a planet up to three times the size of Earth and weighing up to 10 times as much. The findings, reported in the Dec. 2 issue of the journal Nature, are a significant milestone toward eventually being able to probe the atmospheres of Earth-like planets for signs of life.

The team determined the planet, GJ 1214b, is either blanketed with a thin layer of water steam or surrounded by a thick layer of high clouds. If the former, the planet itself would have an icy composition. If the latter, the planet would be rocky or similar to the composition of Neptune, though much smaller.

"This is the first super-Earth known to have an atmosphere," said Jacob Bean, a NASA Sagan Fellow and astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But even with these new measurements, we can't say yet what that atmosphere is made of. This world is being very shy and veiling its true nature from us."

GJ 1214b, first discovered in December 2009, is 2.7 times the size of Earth and 6.5 times as massive. Previous observations of the planet's size and mass demonstrated it has a low density for its size, leading astronomers to conclude the planet is some kind of solid body with an atmosphere.

The planet orbits close to its dim star, at a distance of 0.014 astronomical units. An astronomical unit is the distance between Earth and the sun, approximately 93 million miles. GJ 1214b circles too close to its star to be habitable by any life forms.

Bean and his team observed infrared light as the planet crossed in front of its star. During such transits, the star's light filters through the atmosphere. Gases absorb the starlight at particular wavelengths, leaving behind chemical fingerprints detectable from Earth. This same type of technique has been used to study the atmospheres of distant "hot Jupiters," or Jupiter-like planets orbiting close to their stars, and found gases like hydrogen, methane and sodium vapor.

In the case of the super-Earth, no chemical fingerprints were detected; however, this doesn't mean there are no chemicals present. Instead, this information ruled out some possibilities for GJ 1214b's atmosphere, and narrowed the scope to either an atmosphere of water steam or high clouds. Astronomers believe it's more likely the atmosphere is too thin around the planet to let enough light filter through and reveal chemical fingerprints.

"A steamy atmosphere would have to be very dense – about one-fifth water vapor by volume -- compared to our Earth, with an atmosphere that's four-fifths nitrogen and one-fifth oxygen with only a touch of water vapor," Bean said. "During the next year, we should have some solid answers about what this planet is truly like."

The team, which included Bean's co-authors -- Eliza Miller-Ricci Kempton, a NASA Sagan Fellow at the University of California in Santa Cruz, and Derek Homeier of the Institute for Astrophysics in Gottingen, Germany -- examined GJ 1214b using the ground-based Very Large Telescope at Paranal Observatory in Chile.

"This is an important step forward, narrowing our understanding of the atmosphere of this planet," said NASA Exoplanet Exploration Program Scientist Douglas Hudgins at NASA Headquarters in Washington. "Bizarre worlds like this make exoplanet science one of the most compelling areas in astrophysics today."

The Sagan Fellowship Program is administered by the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena. Its purpose is to advance the scientific and technical goals of NASA's Exoplanet Exploration Program. The program is managed for NASA by the Jet Propulsion Laboratory in Pasadena, Calif. Caltech manages JPL for NASA.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Spain Supplies Weather Station for Next Mars Rover

The first instrument from Spain for a mission to Mars will provide daily weather reports from the Red Planet. Expect extremes.

Major goals for NASA's Mars Science Laboratory include assessing the modern environment in its landing area, as well as clues to environments billions of years ago. The environment station from Spain will fill a central role in studying modern conditions by measuring daily and seasonal changes.

The Rover Environmental Monitoring Station, or REMS, is one of 10 instruments in the mission's science payload. REMS uses sensors on the mast, on the deck and inside the body of the mission's car-size rover, Curiosity.

Spain's Ministry of Science and Innovation and Spain's Center for Industrial Technology Development supplied the instrument. Components were installed on Curiosity in September and are being tested at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

While most of Curiosity's electronics are sheltered for some protection from the Martian environment, the team that developed and built the environmental station needed to fashion external sensors that could tolerate the temperature extremes that some of them would be monitoring.

"That was our biggest engineering challenge," said REMS Principal Investigator Javier Gómez-Elvira, an aeronautical engineer with the Centro de Astrobiología, Madrid, Spain. "The sensors will get very cold and go through great changes in temperature every day." The Center for Astrobiology is affiliated with the Spanish National Research Council and the National Institute for Aerospace Technology.

The air temperature around the rover mast will likely drop to about minus 130 degrees Celsius (about minus 202 degrees Fahrenheit) some winter nights and climb to about minus 50 C (about minus 60 F) by 12 hours later. On warmer days, afternoon air temperatures could reach a balmy 10 to 30 C (50 to 86 F), depending on which landing site is selected.

Other challenges have included accounting for how the rover itself perturbs air movement, and keeping the entire weather station's mass to just 1.3 kilograms (2.9 pounds).

The instrument will record wind speed, wind direction, air pressure, relative humidity, air temperature and ground temperature, plus one variable that has not been measured by any previous weather station on the surface of Mars: ultraviolet radiation. Operational plans call for taking measurements for five minutes every hour of the 23-month-long mission. Twenty-three months is equal to approximately one Martian year.

Monitoring ground temperature and ultraviolet radiation along with other weather data will contribute to understanding the Martian climate and will aid the mission's assessment of whether the current environment around the rover has conditions favorable for microbial life.

"It is important to know the temperature and humidity right at ground level," said Gómez-Elvira. Humidity at the landing sites will be extremely low, but knowing daily humidity cycles at ground level could help researchers understand the interaction of water vapor between the soil and the atmosphere. If the environment supports, or ever supported, any underground microbes, that interaction could be key.

Ultraviolet radiation can also affect habitability. For example, germ-killing ultraviolet lamps are commonly used to help maintain sterile conditions for medical and research equipment. The ultraviolet sensor Curiosity's deck measures six different wavelength bands in the ultraviolet portion of the spectrum, including wavelengths also monitored from above by NASA's Mars Reconnaissance Orbiter.

The weather station will help extend years of synergy between missions that study Mars from orbit and missions on the surface.

"We will gain information about whether local conditions are favorable for habitability, and we will also contribute to understanding the global atmosphere of Mars," said Gómez-Elvira. "The circulation models of the Mars atmosphere are based mainly on observations by orbiters. Our measurements will provide a way to verify and improve the models."

For example, significant fractions of the Martian atmosphere freeze onto the ground as a south polar carbon-dioxide ice cap during southern winter and as a north polar carbon-dioxide ice cap in northern winter, returning to the atmosphere in each hemisphere's spring. At Curiosity's landing site far from either pole, REMS will check whether seasonal patterns of changing air pressure fit the existing models for effects of the coming and going of polar carbon-dioxide ice.

The sensor for air pressure, developed for REMS by the Finnish Meteorological Institute, uses a dust-shielded opening on Curiosity's deck. The most conspicuous components of the weather station are two fingers extending horizontally from partway up the rover's remote-sensing mast.

Each of these two REMS mini-booms holds three electronic sensors for detecting air movement in three dimensions. Placement of the booms at an angle of 120 degrees from each other enables calculating the velocity of wind without worrying about the main mast blocking the wind. One mini-boom also holds the humidity sensor; the other a set of directional infrared sensors for measuring ground temperature.

To develop REMS and prepare for analyzing the data it will provide, Spain has assembled a team of about 40 researchers -- engineers and scientists. The team plans to post daily Mars weather reports online.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Cassini Back to Normal, Ready for Enceladus

NASA's Cassini spacecraft resumed normal operations today, Nov. 24. All science instruments have been turned back on, the spacecraft is properly configured and Cassini is in good health. Mission managers expect to get a full stream of data during next week's flyby of the Saturnian moon Enceladus.

Cassini went into safe mode on Nov. 2, when one bit flipped in the onboard command and data subsystem computer. The bit flip prevented the computer from registering an important instruction, and the spacecraft, as programmed, went into the standby mode.

Engineers have traced the steps taken by the computer during that time and have determined that all spacecraft responses were proper, but still do not know why the bit flipped.

The flyby on Nov. 30 will bring Cassini to within about 48 kilometers (30 miles) of the surface of Enceladus. At 61 degrees north latitude, this encounter and its twin three weeks later at the same altitude and latitude, are the closest.

Cassini will come to the northern hemisphere surface of Enceladus during the extended Solstice mission. (Cassini's closest-ever approach to the surface occurred in October 2008, when it dipped to an altitude of 25 kilometers, or 16 miles.)

During the closest part of the Nov. 30 flyby, Cassini's radio science subsystem will make gravity measurements. The results will be compared with those from an earlier flyby of the Enceladus south pole to understand the moon's interior structure better.

Cassini's fields and particles instruments will sample the charged particle environment around Enceladus. Other instruments will capture images in visible light and other parts of the light spectrum after Cassini makes its closest approach.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C.

More Cassini information is available at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

market umbrellas, outdoor gazebos, outdoor patio umbrellas, shade sail, water misting, patio umbrellas

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS