Kepler Mission Discovers Two Planets Transiting the Same Star

NASA's Kepler spacecraft has discovered the first confirmed planetary system with more than one planet crossing in front of, or transiting, the same star.

The transit signatures of two distinct planets were seen in the data for the sun-like star designated Kepler-9. The planets were named Kepler-9b and 9c. The discovery incorporates seven months of observations of more than 156,000 stars as part of an ongoing search for Earth-sized planets outside our solar system. The findings will be published in Thursday's issue of the journal Science.

Kepler's ultra-precise camera measures tiny decreases in the stars' brightness that occur when a planet transits them. The size of the planet can be derived from these temporary dips.

The distance of the planet from the star can be calculated by measuring the time between successive dips as the planet orbits the star. Small variations in the regularity of these dips can be used to determine the masses of planets and detect other non-transiting planets in the system.

In June, mission scientists submitted findings for peer review that identified more than 700 planet candidates in the first 43 days of Kepler data. The data included five additional candidate systems that appear to exhibit more than one transiting planet. The Kepler team recently identified a sixth target exhibiting multiple transits and accumulated enough follow-up data to confirm this multi-planet system.

"Kepler's high quality data and round-the-clock coverage of transiting objects enable a whole host of unique measurements to be made of the parent stars and their planetary systems," said Doug Hudgins, the Kepler program scientist at NASA Headquarters in Washington.

Scientists refined the estimates of the masses of the planets using observations from the W.M. Keck Observatory in Hawaii. The observations show Kepler-9b is the larger of the two planets, and both have masses similar to but less than Saturn. Kepler-9b lies closest to the star with an orbit of about 19 days, while Kepler-9c has an orbit of about 38 days. By observing several transits by each planet over the seven months of data, the time between successive transits could be analyzed.

"This discovery is the first clear detection of significant changes in the intervals from one planetary transit to the next, what we call transit timing variations," said Matthew Holman, a Kepler mission scientist from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "This is evidence of the gravitational interaction between the two planets as seen by the Kepler spacecraft."

In addition to the two confirmed giant planets, Kepler scientists also have identified what appears to be a third, much smaller transit signature in the observations of Kepler-9. That signature is consistent with the transits of a super-Earth-sized planet about 1.5 times the radius of Earth in a scorching, near-sun 1.6 day-orbit. Additional observations are required to determine whether this signal is indeed a planet or an astronomical phenomenon that mimics the appearance of a transit.

NASA's Ames Research Center in Moffett Field, Calif., manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Pulverized Planet Dust May Lie Around Double Stars

Tight double-star systems might not be the best places for life to spring up, according to a new study using data from NASA's Spitzer Space Telescope. The infrared observatory spotted a surprisingly large amount of dust around three mature, close-orbiting star pairs. Where did the dust come from? Astronomers say it might be the aftermath of tremendous planetary collisions.

"This is real-life science fiction," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "Our data tell us that planets in these systems might not be so lucky -- collisions could be common. It's theoretically possible that habitable planets could exist around these types of stars, so if there happened to be any life there, it could be doomed."

Drake is the principal investigator of the research, published in the Aug.19 issue of the Astrophysical Journal Letters.

The particular class of binary, or double, stars in the study are about as snug as stars get. Named RS Canum Venaticorums, or RS CVns for short, they are separated by only about two million miles (3.2 million kilometers), or two percent of the distance between Earth and our sun. The stellar pairs orbit around each other every few days, with one face on each star perpetually locked and pointed toward the other.

The close-knit stars are similar to the sun in size and are probably about a billion to a few billion years old -- roughly the age of our sun when life first evolved on Earth. But these stars spin much faster, and, as a result, have powerful magnetic fields, and giant, dark spots. The magnetic activity drives strong stellar winds -- gale-force versions of the solar wind -- that slow the stars down, pulling the twirling duos closer over time. And this is where the planetary chaos may begin.

As the stars cozy up to each other, their gravitational influences change, and this could cause disturbances to planetary bodies orbiting around both stars. Comets and any planets that may exist in the systems would start jostling about and banging into each other, sometimes in powerful collisions. This includes planets that could theoretically be circling in the double stars' habitable zone, a region where temperatures would allow liquid water to exist. Though no habitable planets have been discovered around any stars beyond our sun at this point in time, tight double-star systems are known to host planets; for example, one system not in the study, called HW Vir, has two gas-giant planets.

"These kinds of systems paint a picture of the late stages in the lives of planetary systems," said Marc Kuchner, a co-author from NASA Goddard Space Flight Center in Greenbelt, Md. "And it's a future that's messy and violent."

Spitzer spotted the infrared glow of hot dusty disks, about the temperature of molten lava, around three such tight binary systems. One of the systems was originally flagged as having a suspicious excess of infrared light in 1983 by the Infrared Astronomical Satellite. In addition, researchers using Spitzer recently found a warm disk of debris around another star that turned out to be a tight binary system.

The astronomy team says that dust normally would have dissipated and blown away from the stars by this mature stage in their lives. They conclude that something -- most likely planetary collisions -- must therefore be kicking up the fresh dust. In addition, because dusty disks have now been found around four, older binary systems, the scientists know that the observations are not a fluke. Something chaotic is very likely going on.

If any life forms did exist in these star systems, and they could look up at the sky, they would have quite a view. Marco Matranga, first author of the paper, from the Harvard-Smithsonian Center for Astrophysics and now a visiting astronomer at the Palermo Astronomical Observatory in Sicily, said, "The skies there would have two huge suns, like the ones above the planet Tatooine in 'Star Wars.'"

Other authors include V.L. Kashyap of the Harvard-Smithsonian Center for Astrophysics; and Massimo Marengo of Iowa State University, Ames.

The Spitzer observations were made before it ran out of its liquid coolant in May 2009, officially beginning its warm mission.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA. For more information about Spitzer, visit http://spitzer.caltech.edu/ and http://www.nasa.gov/spitzer .

The Infrared Astronomical Satellite, known commonly by its acronym, IRAS, was a joint project between NASA, the Netherlands and the United Kingdom.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Sensors to Guide Spacecraft to Safe, Distant Landings

NASA is developing technologies that will allow landing vehicles to automatically identify and navigate to the location of a safe landing site while detecting landing hazards during the final descent to the surface. This is important because future missions -- whether to the Moon, an asteroid, Mars or other location -- will need this capability to land safely near specific resources that are located in potentially hazardous terrain.

Langley Research Center, Hampton, Va., has designed three light detection and ranging (lidar) sensors that together can provide all the necessary data for achieving safe autonomous precision landing.

One is a three-dimensional active imaging device, referred to as flash lidar, for detecting hazardous terrain features and identifying safe landing sites. The second is a Doppler lidar instrument for measuring the vehicle velocity and altitude to help land precisely at the chosen site. The third is a high-altitude laser altimeter providing data prior to final approach for correcting the flight trajectory towards the designated landing area.

In conjunction with laser/lidar sensor development at Langley, NASA's Jet Propulsion Laboratory, Pasadena, Calif., is developing algorithms, or mathematical procedures, for analyzing the acquired three-dimensional lidar maps and determining the most suitable landing site. The resulting Doppler lidar and laser altimeter data are used by the navigation system being developed by NASA Johnson Space Center, Houston, and Charles Draper Laboratory, Cambridge, Mass., to control the spacecraft to the identified location.

These technologies have been integrated as part of NASA's Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and are in the process of being demonstrated in a series of flight tests.

The most recent flight tests occurred at NASA's Dryden Flight Research Center, Edwards, Calif., in July.

"These were the first tests where we had all three of our laser systems on board and working together as a complete sensor suite," said Langley's Farzin Amzajerdian, technical lead for development of the sensors. "These tests are being viewed as critical by many within NASA."

Robert Reisse, Langley project manager, added, "We were pleased that the flight tests we've conducted so far have resulted in better than expected performance of these sensors."

The main objective of the first test, carried out in May 2008, was to demonstrate the application of 3-D imaging technology, or 'flash' lidar, for topography mapping and hazard detection.

The second round of flight tests, completed in August 2008, was to evaluate the capabilities of the Doppler lidar. This lidar provides high reliability vehicle velocity vector, altitude and attitude with about two orders of magnitude higher precision than radars.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Marks 35th Anniversary of Mars Viking Mission

From the perennial Mars hoax to Ray Bradbury's The Martian Chronicles, no other body in our solar system has so captured the human imagination. Throughout history mankind has gazed into the night sky wondering what civilizations awaited those who landed on the Red Planet's surface. The novels of Burroughs and others tout the planet's allure and films have warned humanity of its dangers.

In 1965, the Mariner 4 spacecraft sent the first images of another planet to waiting scientists on Earth. Since that image, the Red Planet has revealed a world strangely familiar, yet challenging. Each time scientists feel close to understanding Mars, new discoveries send them back to the drawing board to revise existing theories.

In the 35 years since NASA launched Viking 1 on Aug. 20, 1975, the ambitious mission only whetted the scientific world and public's enthusiasm for future space exploration. In the ensuing years, NASA has launched the Phoenix Mars Lander, Mars Reconnaissance Orbiter and Mars Exploration Rovers, among others. Perhaps the most successful of these missions is Mars Exploration Rovers. Launched in June and July 2003, respectively, Spirit and Opportunity landed on Mars each for a 90-day mission that continues after more than 6 years.

For centuries, scientists wondered if Mars might be covered with vegetation -- or even inhabited by intelligent beings. Today, we know Mars to be quite different. It is a frozen desert world with now silent volcanoes and deep canyons. Polar ice caps expand and contract with the Martian seasons.

While the story began years earlier, it culminated in August and September 1975 with the launch of two large, nearly identical spacecraft from Cape Canaveral, Fl. Vikings 1 and 2, named for the fearless Nordic explorers of Earth, finally give humans a close-up look at this alien world.

Viking 1 and 2, each consisting of an orbiter and a lander, became the first space probes to obtain high resolution images of the Martian surface; characterize the structure and composition of the atmosphere and surface; and conduct on-the-spot biological tests for life on another planet.

Among the discoveries about Mars over the years, one stands out above all others: the possible presence of liquid water, either in its ancient past or preserved in the subsurface today. Water is key because almost everywhere water is found on Earth, so is life. If Mars once had liquid water, or still does today, it's compelling to ask whether any microscopic life forms could have developed on its surface.

Viking 1 arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia. Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.

For more information about Viking, visit: http://www.nasa.gov/viking.

Other interesting articles : mist cooling system, patio misting, outdoor misting fans, water mist system

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Drought Drives Decade-Long Decline in Plant Growth

Earth has done an ecological about-face: Global plant productivity that once flourished under warming temperatures and a lengthened growing season is now on the decline, struck by the stress of drought.

NASA-funded researchers Maosheng Zhao and Steven Running, of the University of Montana in Missoula, discovered the global shift during an analysis of NASA satellite data. Compared with a six-percent increase spanning two earlier decades, the recent ten-year decline is slight -- just one percent. The shift, however, could impact food security, biofuels, and the global carbon cycle.

"We see this as a bit of a surprise, and potentially significant on a policy level because previous interpretations suggested that global warming might actually help plant growth around the world," Running said.

"These results are extraordinarily significant because they show that the global net effect of climatic warming on the productivity of terrestrial vegetation need not be positive -- as was documented for the 1980’s and 1990’s," said Diane Wickland, of NASA Headquarters and manager of NASA's Terrestrial Ecology research program.

Conventional wisdom based on previous research held that land plant productivity was on the rise. A 2003 paper in Science led by then University of Montana scientist Ramakrishna Nemani (now at NASA Ames Research Center, Moffett Field, Calif.) showed that global terrestrial plant productivity increased as much as six percent between 1982 and 1999. That's because for nearly two decades, temperature, solar radiation and water availability -- influenced by climate change -- were favorable for growth.

Setting out to update that analysis, Zhao and Running expected to see similar results as global average temperatures have continued to climb. Instead, they found that the impact of regional drought overwhelmed the positive influence of a longer growing season, driving down global plant productivity between 2000 and 2009. The team published their findings Aug. 20 in Science.

"This is a pretty serious warning that warmer temperatures are not going to endlessly improve plant growth," Running said.

The discovery comes from an analysis of plant productivity data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite, combined with growing season climate variables including temperature, solar radiation and water. The plant and climate data are factored into an algorithm that describes constraints on plant growth at different geographical locations.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Ping-Pong Balls to Float Crew Capsule Simulator

That's what a team of summer students and engineers think at NASA’s Langley Research Center in Hampton, Va. Langley is fabricating a proposed design of an astronaut crew module simulator for uncrewed flight-testing as part of the agency's effort to build a vehicle to replace the space shuttle.

Because the crew module will not be pressurized during the test, it will not have the buoyancy of a pressurized spacecraft. This puts the simulated crew module at risk of sinking to the bottom of the Atlantic Ocean after splashdown.

To save the valuable test article for analysis and possible reuse, Langley called on a team of creative minds for a solution.

And as it turned out, inexpensive, lightweight ping-pong balls provided the answer. Langley engineer John DiNonno proposed the idea, and the Orion Flight Test Office told the team to study it.

The idea quickly became "very plausible," said student Caroline Kirk.

"At first we didn't really realize that we were going to get so far in proving that it would be possible," said Kirk, a Suffolk, Va., native attending Virginia Tech as an aerospace engineering major. "But when we thought about everything logically, it just seemed like ping-pong balls were the way to go."

She and a team of seven other students worked the project in Langley's Mechanical Systems Branch, where they were assigned for the summer.

DiNonno got the idea from a Discovery Channel program about raising a sunken boat using 27,000 ping-pong balls.

Engineer David Covington said that when DiNonno suggested the ping-pong ball idea, "I just laughed. Not a 'what are you thinking' kind of laugh, but more of a 'that's the most awesome thing I've heard in a long time' laugh. I asked him 'are you serious?' and he said 'yeah, we're authorized to do a four-week study.' So we went straight to work."

Ensuring the outcome would be relatively low-cost was a top priority, said DiNonno.

"Recovering the capsule was not a requirement, but it was a desire," he said. "So there wasn't going to be a lot of investment in it."


Testing process

The students divided the tasks needed to determine if the idea was feasible, each becoming a "principal investigator" for a specific area.

They tested ping-pong balls of varying quality, much the way spacecraft hardware is tested. They studied how the balls would react to the near-vacuum at the edge of space. Using buoyancy tests, they determined how well the balls would float.

The students also subjected the ping-pong balls to mechanical loads using a hydraulic press, and heated them to see how they would react to the high temperatures of descent into the Earth's atmosphere. And they performed electrostatic discharge tests to determine if the balls would produce a static charge that could disrupt the space capsule's electronics.

The ping-pong balls passed all the challenges, said Heather Blount, a materials science engineering student at Virginia Tech.

"Through all our testing and calculations, we figured out that it could be a safe and viable option," said Blount, of Yorktown, Va.

Keeping the crew module afloat would take at least 150,000 ping-pong balls, the students estimate, at a retail price of 50 cents or less each -- a fraction of the cost of traditional options. The students hope to reduce the cost through a bulk purchase.

If the flight test is approved, the ping-pong ball concept would still need to be vetted with the flight test team and reviewed by NASA senior management. If implemented, the ping-pong balls probably will be put into netted bags and secured inside the crew module just prior to launch. They would virtually fill the available space inside the uncrewed capsule.

Then, when the unsealed capsule splashes down, the buoyancy of the ping-pong balls will offset the weight of incoming water and it will float instead of sink.

The ping-pong balls also will reduce the volume of air that needs to be vented from the capsule during ascent - as well as drawn in during descent - as the capsule travels through significant changes in atmospheric pressure.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Raisin' Mountains on Saturn's Moon Titan

Saturn's moon Titan ripples with mountains, and scientists have been trying to figure out how they form. The best explanation, it turns out, is that Titan is shrinking as it cools, wrinkling up the moon's surface like a raisin.

A new model developed by scientists working with radar data obtained by NASA's Cassini spacecraft shows that differing densities in the outermost layers of Titan can account for the unusual surface behavior. Titan is slowly cooling because it is releasing heat from its original formation and radioactive isotopes are decaying in the interior. As this happens, parts of Titan's subsurface ocean freeze over, the outermost ice crust thickens and folds, and the moon shrivels up. The model is described in an article now online in the Journal of Geophysical Research.

"Titan is the only icy body we know of in the solar system that behaves like this," said Giuseppe Mitri, the lead author of the paper and a Cassini radar associate based at the California Institute of Technology in Pasadena. "But it gives us insight into how our solar system came to be."

An example of this kind of process can also be found on Earth, where the crumpling of the outermost layer of the surface, known as the lithosphere, created the Zagros Mountains in Iran, Mitri said.

Titan's highest peaks rise up to about two kilometers (6,600 feet), comparable to the tallest summits in the Appalachian Mountains. Cassini was the first to spot Titan's mountains in radar images in 2005. Several mountain chains on Titan exist near the equator and are generally oriented west-east. The concentration of these ranges near the equator suggests a common history.

While several other icy moons in the outer solar system have peaks that reach heights similar to Titan's mountain chains, their topography comes from extensional tectonics -- forces stretching the ice shell -- or other geological processes. Until now, scientists had little evidence of contractional tectonics -- forces shortening and thickening the ice shell. Titan is the only icy satellite where the shortening and thickening are dominant.

Mitri and colleagues fed data from Cassini's radar instrument into computer models of Titan developed to describe the moon's tectonic processes and to study the interior structure and evolution of icy satellites. They also made the assumption that the moon's interior was only partially separated into a mixture of rock and ice, as suggested by data from Cassini's radio science team.

Scientists tweaked the model until they were able to build mountains on the surface similar to those Cassini had seen. They found the conditions were met when they assumed the deep interior was surrounded by a very dense layer of high-pressure water ice, then a subsurface liquid-water-and-ammonia ocean and an outer water-ice shell. So the model, Mitri explained, also supports the existence of a subsurface ocean.

Each successive layer of Titan's interior is colder than the one just inside it, with the outermost surface averaging a chilly 94 Kelvin (minus 290 degrees Fahrenheit). So cooling of the moon causes a partial freezing of the subsurface liquid ocean and thickening of the outer water ice shell. It also thickens the high-pressure ice. Because the ice on the crust is less dense than the liquid ocean and the liquid ocean is less dense than the high-pressure ice, the cooling means the interior layers lose volume and the top "skin" of ice puckers and folds.

Since the formation of Titan, which scientists believe occurred around four billion years ago, the moon's interior has cooled significantly. But the moon is still releasing hundreds of gigawatts of power, some of which may be available for geologic activity. The result, according to the model, was a shortening of the radius of the moon by about seven kilometers (four miles) and a decrease in volume of about one percent.

"These results suggest that Titan's geologic history has been different from that of its Jovian cousins, thanks, perhaps, to an interior ocean of water and ammonia," said Jonathan Lunine, a Cassini interdisciplinary scientist for Titan and co-author on the new paper. Lunine is currently based at the University of Rome, Tor Vergata, Italy. "As Cassini continues to map Titan, we will learn more about the extent and height of mountains across its diverse surface."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the Cassini-Huygens mission for NASA's Science Mission Directorate. The Cassini orbiter was designed, developed and assembled at JPL. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the United States and several European countries. JPL is a division of the California Institute of Technology in Pasadena.

More Cassini information is available, at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

GRIP 'Shakedown' Flight Planned over Gulf Coast

The first flight of NASA's hurricane airborne research mission is scheduled to take off from Ft. Lauderdale, Fla., on Tuesday, Aug. 17. NASA's DC-8 research aircraft will be making a planned five-hour flight along the Gulf Coast from western Florida to Louisiana primarily as a practice run for the many scientific instruments aboard.

Mission scientists, instrument teams, flight crew and support personnel gathered in Fort Lauderdale this weekend to begin planning the six-week Genesis and Rapid Intensification Processes mission, or GRIP. NASA's DC-8, the largest of NASA's three aircraft taking part in the mission, is based at the Fort Lauderdale airport. The two other aircraft -- the WB-57 based in Houston and the autonomous Global Hawk flying out of southern California -- will join the campaign in about a week.

The target for Tuesday's "shakedown" flight is the remnants of Tropical Depression 5, a poorly organized storm system whose center is currently hugging the coasts of Mississippi and Louisiana and moving westward. While forecasters do not expect this storm system to strengthen significantly before it reaches landfall in Louisiana, the system offers the DC-8's seven instrument teams an opportunity to try out their equipment on possible convective storms. Rainfall rates, wind speed and direction below the airplane to the surface, cloud droplet sizes, and aerosol particle sizes are just some of the information that these instruments will collect.

GRIP science team members and project managers are now meeting daily at the airport to review weather forecasts and plan upcoming flights with their counterparts in two other airborne hurricane research missions sponsored by the National Atmospheric and Oceanic Administration (NOAA) and the National Science Foundation. Instrument teams are also working on their equipment onboard the DC-8 in preparation for the flight.

On Sunday, Aug. 15, NASA's Global Hawk completed a successful test flight over NASA's Dryden Flight Research Center in Edwards, Calif., that took the remotely piloted plane to an altitude of 60,000 feet. The last of three instruments being mounted on the Global Hawk for GRIP is being installed this week.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

tar Wars Meets UPS as Robonaut Packed for Space

Getting into space isn't necessarily easy for astronauts, and it's not much easier for a robotic astronaut, either.

Cocooned inside an aluminum frame and foam blocks cut out to its shape, Robonaut 2, or R2, is heading to the International Space Station inside the Permanent Multipurpose Module in space shuttle Discovery's payload bay as part of the STS-133 mission.

Once in place inside the station, R2, with its humanlike hands and arms and stereo vision, is expected to perform some of the repetitive or more mundane functions inside the orbiting laboratory to free astronauts for more complicated tasks and experiments. It could one day also go along on spacewalks.

Making sure the first humanoid robot to head into space still works when it gets there has been the focus of workers at NASA's Kennedy and Johnson space centers. Engineers and technicians with decades of experience among them packing for space have spent the last few months devising a plan to secure the 330-pound machine against the fierce vibrations and intense gravity forces during launch.

"I think back in May we realized we had a huge challenge on our hands," said Michael Haddock, a mechanical engineer designing the procedures and other aspects of preparing R2 for launch, including careful crane operations inside the Space Station Processing Facility's high bay.

Though it was fast-paced, intense work, the payoff of getting to help R2 into space added extra motivation for the engineers involved.

By spaceflight standards, planning for the packing effort moved quite quickly, particularly considering R2 is perhaps the heaviest payload to be taken into space inside a cargo module.

"The mass is what's driving the crane operations, otherwise we'd be handling the robot by hand," Haddock said. "But the robot itself weighs on the order of 333 pounds and when it is installed in the structural launch enclosure, it will weigh over 500 pounds."

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Next Station Spacewalk Set for Monday

The Expedition 24 crew enjoyed a full day off Friday after the completion of a second contingency spacewalk Wednesday to replace a failed ammonia pump module. Over the weekend, Flight Engineers Doug Wheelock and Tracy Caldwell Dyson will prepare for a third spacewalk to continue the installation of a spare ammonia pump module on the S1 Truss. That spacewalk is planned for Monday a little before 7 a.m. EDT.

The failed pump module that provided cooling for the International Space Station’s systems was removed from the S1 Truss during Wednesday’s repair spacewalk which lasted 7 hours, 26 minutes. It was temporarily stowed on an external stowage platform adjacent to the Quest airlock. The first repair spacewalk took place Saturday, Aug. 7 and lasted a record 8 hours, 3 minutes.

› Read more about the second spacewalk to replace failed coolant pump

Flight Engineer Shannon Walker has been assisting the spacewalkers from inside the station and operating Canadarm2, the station’s robotic arm. Specialists on the ground carefully plotted the robotic maneuvers necessary for Walker to move the spacewalkers into their work positions. The procedures were sent up for her to practice in between spacewalks.

After the original pump module failed two weeks ago ground controllers powered down numerous station systems and readjusted them to provide maximum redundancy. Mission managers and astronauts on the ground also quickly began choreographing the contingency spacewalks and planning repair procedures. The spacewalks were planned several days apart to give crew members time to rest and managers on the ground time to review data and make necessary adjustments.

Wheelock, designated as EV1, or extravehicular crew member 1, has been wearing a spacesuit with red stripes on the legs. Caldwell Dyson, designated as EV2, has been wearing an unmarked spacesuit. Monday’s spacewalk will be Wheelock’s sixth and Caldwell Dyson’s third.

Approximately two hours after the conclusion of Monday’s spacewalk NASA TV will broadcast a briefing from Johnson Space Center. The briefing participants will include Mike Suffredini, International Space Station program manager; Courtenay McMillan, Expedition 24 spacewalk flight director; and David Beaver, Expedition 24 spacewalk officer.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

The Perseid Meteor Shower -- Live and Online Tonight

Looking for a little excitement as the summer draws to a close? This year's Perseid meteor shower peaks on the night of Aug. 12-13, and it promises to be one of the best displays of the year. If forecasters are correct, the shower should produce a peak display of at least 80 meteors per hour. A waxing crescent moon will set before the shower becomes active, setting a perfect stage for meteor watching -- weather permitting, of course!

On Thursday, Aug. 12, astronomer Bill Cooke from NASA's Marshall Space Flight Center answered your questions about the Perseids.

A live video/audio feed -- did you know meteors sing a song of blips, pings, and whistles? -- of the Perseid shower is embedded below. The camera is mounted at NASA's Marshall Space Flight Center in Huntsville, Ala. During the day, you'll see a dark gray box -- the camera is light-activated and will turn on at dusk each evening. Even before the camera activates, you can still hear the audio of meteors passing through the sky. Also, check out the "Perseids Fireball Cam", from a camera mounted in Chickamauga, Ga.

Looking for a little excitement as the summer draws to a close? This year's Perseid meteor shower peaks on the night of Aug. 12-13, and it promises to be one of the best displays of the year. If forecasters are correct, the shower should produce a peak display of at least 80 meteors per hour. A waxing crescent moon will set before the shower becomes active, setting a perfect stage for meteor watching -- weather permitting, of course!

On Thursday, Aug. 12, astronomer Bill Cooke from NASA's Marshall Space Flight Center answered your questions about the Perseids.

A live video/audio feed -- did you know meteors sing a song of blips, pings, and whistles? -- of the Perseid shower is embedded below. The camera is mounted at NASA's Marshall Space Flight Center in Huntsville, Ala. During the day, you'll see a dark gray box -- the camera is light-activated and will turn on at dusk each evening. Even before the camera activates, you can still hear the audio of meteors passing through the sky. Also, check out the "Perseids Fireball Cam", from a camera mounted in Chickamauga, Ga.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

The Mysterious Roving Rocks of Racetrack Playa

In a particularly parched region of an extraordinary planet, rocks big and small glide across a mirror-flat landscape, leaving behind a tangle of trails. Some rocks travel in pairs, their two tracks so perfectly in synch along straight stretches and around curves that they seem to be made by a car. Others go freewheeling, wandering back and forth alone and sometimes traveling the length of several football fields. In many cases, the trails lead right to resting rocks, but in others, the joyriders have vanished.

This may sound like an alien world, but it's actually Racetrack Playa in Death Valley, Calif. Since the 1940s, researchers have documented trails here and on several other playas in California and Nevada. Seventeen undergraduate and graduate students from the Lunar and Planetary Sciences Academy (LPSA) at NASA's Goddard Space Flight Center in Greenbelt, Md., traveled to the Racetrack and nearby Bonnie Claire playas this summer to investigate how these rocks move across the nearly empty flats.

Some rocks are thought to have moved nearly as fast as a person walks. But nobody has actually seen a rock in motion, and scientists haven't deduced exactly how it happens. The easy explanations—assistance from animals, gravity, or earthquakes—were quickly ruled out, leaving room for plenty of study and irresistible speculation over the years.

"When you see these amazing rocks and trails," says Mindy Krzykowski, an intern from the University of Alaska in Fairbanks, "you really get into coming up with your own ideas about what's going on."

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Star Wars Meets UPS as Robonaut Packed for Space

Getting into space isn't necessarily easy for astronauts, and it's not much easier for a robotic astronaut, either.

Cocooned inside an aluminum frame and foam blocks cut out to its shape, Robonaut 2, or R2, is heading to the International Space Station inside the Permanent Multipurpose Module in space shuttle Discovery's payload bay as part of the STS-133 mission.

Once in place inside the station, R2, with its humanlike hands and arms and stereo vision, is expected to perform some of the repetitive or more mundane functions inside the orbiting laboratory to free astronauts for more complicated tasks and experiments. It could one day also go along on spacewalks.

Making sure the first humanoid robot to head into space still works when it gets there has been the focus of workers at NASA's Kennedy and Johnson space centers. Engineers and technicians with decades of experience among them packing for space have spent the last few months devising a plan to secure the 330-pound machine against the fierce vibrations and intense gravity forces during launch.

"I think back in May we realized we had a huge challenge on our hands," said Michael Haddock, a mechanical engineer designing the procedures and other aspects of preparing R2 for launch, including careful crane operations inside the Space Station Processing Facility's high bay.

Though it was fast-paced, intense work, the payoff of getting to help R2 into space added extra motivation for the engineers involved.

By spaceflight standards, planning for the packing effort moved quite quickly, particularly considering R2 is perhaps the heaviest payload to be taken into space inside a cargo module.

"The mass is what's driving the crane operations, otherwise we'd be handling the robot by hand," Haddock said. "But the robot itself weighs on the order of 333 pounds and when it is installed in the structural launch enclosure, it will weigh over 500 pounds."

As they must when loading anything for spaceflight, the engineers designed the packaging so astronauts could easily remove R2 from its launch box, known by its acronym SLEEPR or Structural Launch Enclosure to Effectively Protect Robonaut.

"We were trying to do something very unique and very fast," said Scott Higginbotham, payload manager for the STS-133 mission. "And we've got the best team in the world for dealing with things like that."

There was talk of simply strapping the robot into the empty seat on the shuttle's middeck, Higginbotham said, but R2 was too heavy for that. So the teams came up with a plan to fasten R2 to a base plate and use struts to support the back and shoulders. Then dense foam will provide more support, followed by an aluminum frame. A clamshell of foam tops off the package.

Assembling the packing precisely is important for R2 because a space shuttle accelerates to more than three times the force of gravity during its eight-minute climb into orbit.

"The team had to educate ourselves, learn the uniqueness of it as well as learn how to install it into the vehicle," said Ken Koby, lead systems engineer for Boeing. "That's what the team has basically been doing every day for the last three months, educating ourselves about Robonaut."

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Ice Island Calves off Petermann Glacier

On Aug. 5, 2010, an enormous chunk of ice, roughly 97 square miles (251 square kilometers) in size, broke off the Petermann Glacier, along the northwestern coast of Greenland.

The Canadian Ice Service detected the remote event within hours in near real-time data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite. The Petermann Glacier lost about one-quarter of its 70-kilometer (40-mile) long floating ice shelf, said researchers who analyzed the satellite data at the University of Delaware.

The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured these natural-color images of Petermann Glacier 18:05 UTC on August 5, 2010 (top), and 17:15 UTC on July 28, 2010 (bottom).

The Terra image of the Petermann Glacier on August 5 was acquired almost 10 hours after the Aqua observation that first recorded the event. By the time Terra took this image, skies were less cloudy than they had been earlier in the day, and the oblong iceberg had broken free of the glacier and moved a short distance down the fjord.

Icebergs calving off the Petermann Glacier are not unusual. Petermann Glacier’s floating ice tongue is the Northern Hemisphere’s largest, and it has occasionally calved large icebergs. The recently calved iceberg is the largest to form in the Arctic since 1962, said the University of Delaware.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Space Station Team Plans For Next Repair Spacewalk

The next spacewalk to complete the removal of a failed ammonia pump module and installation and activation of a new pump module on the International Space Station’s S1 Truss will take place no earlier than Wednesday.

Expedition 24 Flight Engineers Doug Wheelock and Tracy Caldwell Dyson completed the first spacewalk to remove and replace the pump module at 3:22 p.m. EDT Saturday. As the result of an ammonia leak in the final line that needed to be disconnected from the failed pump module, the day’s tasks were only partially completed. The decision was made to reconnect the line on the pump module and install a spool positioning device to maintain proper pressure internal to the ammonia line.

Teams on the ground are evaluating the impact of the leak on plans to replace the failed pump, as well as possible fixes for the leak. The completion of the process will most likely require at least two additional spacewalks.

Saturday’s excursion lasted 8 hours, 3 minutes, making it the longest expedition crew spacewalk in history and the sixth longest in human spaceflight history.

Wheelock conducted the fourth spacewalk of his career. Caldwell Dyson made her first spacewalk. Flight Engineer Shannon Walker operated Canadarm2, the station’s robotic arm, and assisted the spacewalkers from inside the station.

After the loss of one of two cooling loops July 31, ground controllers powered down and readjusted numerous systems to provide maximum redundancy aboard the orbiting laboratory. The International Space Station is in a stable configuration, the crew is safe and engineers continue reviewing data from the failed pump.

› View Aug. 2 spacewalk briefing graphics
› Read more about the cooling loop loss
› View the ISS Active Thermal Control System Overview (1.2 Mb PDF)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA's Hurricane Quest Set To Begin

In less than two weeks, NASA scientists will begin their quest for the holy grail of hurricane research.

The exact conditions required to kickstart a tropical depression into a hurricane largely remain a mystery. Though scientists know many of the ingredients needed, it is unclear what processes ultimately drive depressions to form into the intense, spinning storms that lash the U.S. coasts each summer.

"Hurricane formation and intensification is really the ‘holy grail' of this field," said Ed Zipser, an atmospheric scientist at the University of Utah and one of three program scientists helping to lead the Genesis and Rapid Intensification Processes (GRIP) experiment this summer.

With GRIP, NASA's first domestic hurricane project since 2001, the agency has assembled the largest-ever hurricane research experiment to investigate these questions. Three NASA planes, multiple NASA satellites and four planes from research partners NOAA and NSF will combine to make unprecedented measurements of tropical storms as they are forming (or dying out) and intensifying (or weakening). The intense scientific focus on these meteorological processes could provide new insight into the fundamental physics of hurricanes and ultimately improve our ability to forecast the strength of a storm at landfall. Predictions of hurricane strength continue to lag behind the accuracy of storm track predictions, but accurate predictions of both are needed for the best possible preparation before landfall.

With each aircraft outfitted with multiple instruments, scientists will be taking a closer look at hurricanes with hopes of gaining insight into which physical processes or large-scale environmental factors are the key triggers in hurricane formation and intensification.

The GRIP fleet includes NASA's Global Hawk, the unmanned drone built by Northrop Grumman and also used by the U.S. Air Force, WB-57 and DC-8. The NASA aircraft will be deployed from Florida (DC-8), Texas (WB-57) and California (Global Hawk) and will fly at varying altitudes over tropical storms in an attempt to capture them at different stages of development.

"One of the potential data-gathering breakthroughs of GRIP could be to continuously observe a tropical storm or hurricane for 24 hours straight, by including aircraft from all three agencies," said GRIP Project Manager Marilyn Vasques. The Global Hawk alone could fly continuously over a storm system for up to 16 hours.

While geostationary satellites used for forecasting can observe the basic movement of a storm across the Atlantic, these aircraft instruments will be able to "see" below the cloud-tops and uncover what is happening in the internal structure of the storm.

"That's what makes this really unique, the ability to observe one of these storms up close as it changes over its life-cycle. Before we've only been able to get a few hours of data at a time," Vasques said. "We want to see storms that become hurricanes, and we want to see some that don't become hurricanes, so we can compare the data. The same is true for hurricane intensification."

"When you think of analyzing it later, we want to break down what the temperatures were, what the winds were doing, what the aerosol concentration was, to see if we can start detecting a pattern," Vasques said.

The variety and number of instruments will allow scientists to investigate multiple science questions at once: What role does dust from the Sahara play in hurricane formation? Can lightning be used as a predictor of a storm's change in intensity? Do widespread environmental conditions such as humidity, temperature, precipitation and clouds lead to cyclone formation, or are smaller-scale interactions between some of these same elements the cause?

Scientists at NASA and the many academic and government research partners in GRIP are excited to put several new state-of-the-art hurricane observing instruments in the field. A powerful microwave radiometer and a radar will provide insight into the massive "hot towers" of convection found in cyclones, and a NASA-designed and –built lidar (laser radar) will provide the first-ever measurements of wind speed in three dimensions – not just east, west, north and south, but also vertically.

These instrument advancements, in addition to the deployment of the Global Hawk in a major Earth science campaign for the first time, have NASA scientists anxious to take to the field.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Spacecraft Sees Solar Flare

On August 1st, the sun emitted a C-class solar flare that spawned what scientists call a coronal mass ejection, or CME, headed toward Earth. The CME impacted Earth's magnetic field August 3rd. CMEs occasionally hit Earth. This CME will have few noticeable consequences beyond producing an aurorae.

The CME hit Earth's magnetic field on August 3rd at 1740 UT. The impact sparked a G2-class geomagnetic storm that lasted nearly 12 hours--time enough for auroras to spread all the way from Europe to North America. The possible arrival of a second CME on August 4th might provide even better spectacular auroral displays.

CMEs are large clouds of charged particles that are ejected from the sun over the course of several hours and can carry up to ten billion tons of plasma. They expand away from the sun at speeds as high as a million miles an hour. A CME can make the 93-million-mile journey to Earth in just two to four days. Stronger solar storms could cause adverse impacts to space-based assets and technological infrastructure on Earth.

The sun goes through a regular activity cycle about 11 years long. The last solar maximum occurred in 2001 and its recent extreme solar minimum was particularly weak and long lasting. These kinds of eruptions are one of the first signs that the sun is waking up and heading toward another solar maximum expected in the 2013 time frame.


  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Lightning Research Happens in a Flash

Lightning's connection to hurricane intensification has eluded researchers for decades, and for a riveting 40 days this summer, NASA lightning researchers will peer inside storms in a way they never have before.

Earth scientists and engineers at NASA's Marshall Space Flight Center in Huntsville, Ala., will soon fly the Lightning Instrument Package, or LIP, a flight instrument designed to track and document lightning as hurricanes develop and intensify. In August and September, LIP will fly on a remotely piloted Global Hawk airplane over the Gulf of Mexico and Atlantic Ocean at an altitude of 60,000 feet. LIP will be part of a NASA hurricane study called Genesis and Rapid Intensification Processes, or GRIP for short. The study involves three storm chaser planes mounted with 15 instruments. LIP and the other instruments will work together to create the most complete view of hurricanes to date.

"We're now putting LIP on an aircraft that can stay in the air for 30 hours," said Richard Blakeslee LIP principal investigator and Earth scientist at the the Marshall Center. "That’s unprecedented. We typically fly on airplanes that fly over a storm for a period of 10-15 minutes. But this plane can stay with a storm for hours."

"We'll be able to see a storm in a way we’ve never seen it before," he added. "We'll see how the storm develops over the long term, and how lightning varies with all the other things going on inside a hurricane. It's the difference between a single photograph and a full-length movie. That’s quite a paradigm shift."

While scientists know an increase in lightning means the storm is changing, it remains a mystery as to whether that increase signifies strengthening or weakening. Though scientists have quite a few ideas, they lack the data to firmly establish a concrete relationship. Researchers hope LIP's upcoming flights will change that. If scientists can figure out the ties between lightning and hurricane severity, meteorologists may be able to greatly improve their short-term forecasts. Researchers have connected lightning to everything from strong winds to flooding to tornadoes, and a few extra minutes of warning time can save lives each year.

"We can use lightning as a natural sensing tool to see into the heart of a storm," said Blakeslee. "Lightning allows us to get at rain and other processes going on within a storm."

For Blakeslee and the rest of the LIP team, the hurricane study this fall presents a tremendous opportunity. In its nearly 15-year lifespan, LIP has flown nearly 100 missions in 10 major field campaigns, soaring over more than 800 storms. That's unparalleled for a lightning instrument, according to Blakeslee, and LIP researchers hope it will continue its long tradition of successful research.

The Guts of the Lightning Instrument Package

LIP's instruments may look simple, but they're surprisingly complex. To measure the electric field in a storm, the instrument relies on electric field mills, devices that allow scientists to measure the amount of lightning a storm produces. Originally developed at NASA, the mills look like big cans -- each about a foot long and approximately 8 inches across. As the instrument flies through the air, a plate covering each can rotates, covering and uncovering four metal disks housed inside. Uncover a disk and electricity from the storm rushes in. Cover the disk and it rushes back out. The whole process converts the electrical current from DC to AC and back to DC, allowing scientists to measure how strong a storm's electric field is, and how prone to lightning it might be. A sudden shift in the strength of the electrical field allows scientists to determine that a lightning strike has occurred.

In addition, a conductivity probe reveals how easily electrical current can flow through the storm to the upper part of the atmosphere. The probe is a small nose-cone shaped device with two sensor tubes attached to each side. As the plane flies near a hurricane, small electrical particles called ions rush through the tube, allowing the team to count them.

The LIP team uses all that data to determine how much lightning a hurricane produces and where it originates within the storm. By combining that data with wind speed, rainfall rate and other information, researchers can connect how lightning relates to hurricane intensification. And because Blakeslee and his team get their data real time, they can redirect the plane as needed to improve the likelihood of quality results.

After the summer hurricane study ends in September, the team will analyze, evaluate, and eventually release the data, a process which should take several months. Following that, the Lightning Instrument Package will continue to fly in hurricane and storm studies in hopes of collecting more data. The more data, the better the forecasts, Blakeslee said -- and the nearer scientists move to understanding these powerful storms.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Desert RATS 2010: Help Us Decide Where to Explore

NASA's Desert RATS – or Research and Technology Studies – will make its 13th trip to the desert this fall for another round of analog testing.

The Desert RATS tests offer a chance for a NASA-led team of engineers, astronauts and scientists from across the country to come together to conduct technology development research in the Arizona desert. The location offers a good stand in for destinations for future planetary exploration missions.

This year's tests will take place Aug. 31 through Sept. 15. The NASA hardware that will be demonstrated includes:

  • Space Exploration Vehicles – a pair of rovers that astronauts will live in for 14 days at a time
  • Habitat Development Unit/Pressurized Excursion Module – a simulated habitat where the rovers can dock to allow the crew room to perform experiments or deal with medical issues
  • Tri-ATHLETEs, or -Terrain Hex-Legged Extra-Terrestrial Explorer – two heavy-lift rover platforms that allow the habitat, or other large items, to go where the action is
  • portable communications terminals
  • Centaur 2 – a possible four-wheeled transportation method for NASA Robonaut 2
  • Portable Utility Pallets, or PUPs for short – mobile charging stations for equipment
  • And a suite of new geology sample collection tools, including a self-contained GeoLab glove box for conducting in-field analysis of various collected rock samples.

In addition, a variety of independent supporting technology elements, including navigation systems to help guide spacewalkers and both solar and wind-powered equipment, will be demonstrated and tested.

During this mission, there will be four crew members living in the two rovers. Their traverse routes will include driving up and down steep slopes and over rough terrain at various speeds. The crew will also demonstrate docking and undocking with the PUPs and the habitat. Other objectives for the rovers include demonstrating the differences in productivity for crew members and their ground support that come with different communication methods, and evaluating different operational concepts for the trips the rovers make.

The ATHLETE System, which consists of a pair of Tri-ATHLETE rovers, will be remotely controlled both in Arizona and from Houston to demonstrate long-traverse operations during lunar time delays and portable local operations from the personnel in Arizona.

The Habitat Development Unit will be used to evaluate the geosciences laboratory in conjunction with the sample collections and to assess the spacesuit maintenance area inside. This team will also focus on procedures for keeping out the dust, the effects on the overall integrated communications and data system and how easy the habitat is for people to use.

For more information on all of these hardware systems, biographies of the crew and mission support teams, traverse locations and success of mission objectives, check out our factsheets and follow the mission on our social media sites.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Wind Shear Accident Was Catalyst for Technology

On that day 25 years ago the public affairs specialist was a young U.S. Air Force airman heading home on leave to North Carolina, flying out of Dallas Fort Worth International Airport.

"I was looking out my window, sitting at the end of the runway aboard the second airplane lined up to take off," said Creech. "I had a window seat and was looking out the window when I noticed some really, really black thunder clouds at our end of the runway. Then I saw orange, extremely bright orange, light. My brain didn't register what I was seeing."

What Creech saw was Delta Flight 191 as it crashed on landing.

"It was like a slow motion thing. There was the initial fireball, but then as the airplane rolled over, breaking apart and slowing down, the fire caught up with it and enveloped it," added Creech. "It all came to a halt directly even with my window, across the other side of the runway in the grass. As soon as the movement stopped, the rain hit. It was like a wall of rain and the fire quickly became a smoke ball, black and white smoke mixed."

"I remember our pilot coming over the intercom and saying something to the effect -- ladies and gentlemen, there has been a tragedy and I'm sorry, but we can't return to the terminal and let anyone deplane," said Creech. "Of course that was the last thing any of us wanted to hear, because anybody who saw that wasn't wanting to stay on their plane and go flying. I know I didn't."

One hundred and thirty four people of the 163 on board the Delta Lockheed L-1011 and one person on the ground died that day, in part because of a powerful thunderstorm microburst-induced wind shear, a rare but potentially deadly downdraft.

Dave Hinton, now the deputy director of the Aeronautics Research Directorate at NASA's Langley Research Center, also remembers that accident vividly. He and a team of researchers studied it for years as part of their efforts to help develop predictive wind shear radar, a technology that is now standard on all airliners.

"That [Dallas] microburst has been modeled extensively," said Hinton. "It was very strong as microbursts go -- at the top of the range and a mile and a half to two miles in diameter. That would be easily detectable with the technologies that are out there today."

The Dallas accident, one of three fatal wind shear events in the 70s and 80s, was the catalyst for the invention of those technologies. Within months a government/industry/academia partnership started attacking the problem of wind shear from all sides.

"It was a tremendously productive cooperation between multiple agencies and companies," said Hinton. "We advanced the state of the art from basic knowledge of a meteorological phenomena to developing well-defined system requirements for on-board sensors and crew procedures."

Hinton was part of the NASA team that took to the skies in search of some of those answers. The team flew on a Langley-based Boeing 737 aircraft, equipped with airborne Doppler radar and forward-looking infrared sensors, and went looking for storms near Denver, Colo., and Orlando, Fla. Crews on the ground, from MIT Lincoln Labs and the National Center for Atmospheric Research (NCAR), staffed ground-based radars to help them find events quickly.

"We flew over a two-year period and penetrated on the order of some 70 microbursts, starting with very weak ones and working up to stronger ones," added Hinton. "We validated the models for the sensors, proving that they do in fact work as we intended."

NASA worked very closely with the Federal Aviation Administration and companies interested in building systems during the seven-year wind shear research program.

"They followed the technology development and as a result provided the credibility and basis for certification," said Hinton. "That meant that within two to three years of our wrapping up the project there were certified systems available. " Those airborne systems, better ground-based radar and improved pilot training have now virtually eliminated U.S. airliner wind shear accidents.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS