1980s Video Icon Glows on Saturn Moon

The highest-resolution-yet temperature map and images of Saturn's icy moon Mimas obtained by NASA's Cassini spacecraft reveal surprising patterns on the surface of the small moon, including unexpected hot regions that resemble "Pac-Man" eating a dot, and striking bands of light and dark in crater walls.

"Other moons usually grab the spotlight, but it turns out Mimas is more bizarre than we thought it was," said Linda Spilker, Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It has certainly given us some new puzzles."

Cassini collected the data on Feb. 13, during its closest flyby of the moon, which is marked by an enormous scar called Herschel Crater and resembles the Death Star from "Star Wars."

Scientists working with the composite infrared spectrometer, which mapped Mimas' temperatures, expected smoothly varying temperatures peaking in the early afternoon near the equator. Instead, the warmest region was in the morning, along one edge of the moon's disk, making a sharply defined Pac-Man shape, with temperatures around 92 Kelvin (minus 294 degrees Fahrenheit). The rest of the moon was much colder, around 77 Kelvin (minus 320 degrees Fahrenheit). A smaller warm spot - the dot in Pac-Man's mouth - showed up around Herschel, with a temperature around 84 Kelvin (minus 310 degrees Fahrenheit).

The warm spot around Herschel makes sense because tall crater walls (about 5 kilometers, or 3 miles, high) can trap heat inside the crater. But scientists were completely baffled by the sharp, V-shaped pattern.

"We suspect the temperatures are revealing differences in texture on the surface," said John Spencer, a Cassini composite infrared spectrometer team member based at Southwest Research Institute in Boulder, Colo. "It's maybe something like the difference between old, dense snow and freshly fallen powder."

Denser ice quickly conducts the heat of the sun away from the surface, keeping it cold during the day. Powdery ice is more insulating and traps the sun's heat at the surface, so the surface warms up.

Even if surface texture variations are to blame, scientists are still trying to figure out why there are such sharp boundaries between the regions, Spencer said. It is possible that the impact that created Herschel Crater melted surface ice and spread water across the moon. That liquid may have flash-frozen into a hard surface. But it is hard to understand why this dense top layer would remain intact when meteorites and other space debris should have pulverized it by now, Spencer said.

Icy spray from the E ring, one of Saturn's outer rings, should also keep Mimas relatively light-colored, but the new visible-light images from the flyby paint a picture of surprising contrasts. Cassini imaging team scientists didn't expect to see dark streaks trailing down the bright crater walls or a continuous, narrow pile of concentrated dark debris tracing the foot of each wall.

The pattern may appear because of the way the surface of Mimas ages, said Paul Helfenstein, a Cassini imaging team associate based at Cornell University, Ithaca, N.Y. Over time, the moon's surface appears to accumulate a thin veil of silicate minerals or carbon-rich particles, possibly because of meteor dust falling onto the moon, or impurities already embedded in surface ice.

As the sun's warming rays and the vacuum of space evaporate the brighter ice, the darker material is concentrated and left behind. Gravity pulls the dark material down the crater walls, exposing fresh ice underneath. Although similar effects are seen on other moons of Saturn, the visibility of these contrasts on a moon continually re-paved with small particles from the E ring helps scientists estimate rates of change on other satellites.

"These processes are not unique to Mimas, but the new high-definition images are like Rosetta stones for interpreting them," Helfenstein said.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo. The composite infrared spectrometer team is based at NASA's Goddard Space Flight Center, Greenbelt, Md., where the instrument was built.

More information and images are available at http://www.nasa.gov/cassini and http://saturn.jpl.nasa.gov.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Discovery's Launch Preparations Continue for STS-131

Today at NASA's Kennedy Space Center in Florida, crews at Launch Pad 39A are set to install the STS-131 payload into space shuttle Discovery's cargo bay. Technicians also continue closeout procedures on the vehicle's aft compartment.

Discovery's astronauts are set to have prelaunch physicals today and conduct final review of flight data at NASA's Johnson Space Center in Houston.

Tuesday, engineers discussed data from tests performed last weekend on Discovery's right reaction control system helium regulators. The decision was made to move forward with this Friday's agency-level Flight Readiness Review. At the conclusion of the review, managers will set the official launch date for the STS-131 mission, which currently is targeted for April 5.

Commander Alan Poindexter is set to lead the STS-131 mission to the International Space Station aboard space shuttle Discovery. Joining Poindexter will be Pilot Jim Dutton and Mission Specialists Rick Mastracchio, Clay Anderson, Dorothy Metcalf-Lindenburger, Stephanie Wilson and Naoko Yamazaki of the Japan Aerospace Exploration Agency.

Discovery will carry a multi-purpose logistics module filled with science racks for the laboratories aboard the station. The mission has three planned spacewalks, with work to include replacing an ammonia tank assembly, retrieving a Japanese experiment from the station’s exterior, and switching out a rate gyro assembly on the S0 segment of the station’s truss structure.

STS-131 will be the 33rd shuttle mission to the station.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Mars Rover Getting Smarter as it Gets Older

NASA's Mars Exploration Rover Opportunity, now in its seventh year on Mars, has a new capability to make its own choices about whether to make additional observations of rocks that it spots on arrival at a new location.

Software uploaded this winter is the latest example of NASA taking advantage of the twin Mars rovers' unanticipated longevity for real Martian test drives of advances made in robotic autonomy for future missions.

Now, Opportunity's computer can examine images that the rover takes with its wide-angle navigation camera after a drive, and recognize rocks that meet specified criteria, such as rounded shape or light color. It can then center its narrower-angle panoramic camera on the chosen target and take multiple images through color filters.

"It's a way to get some bonus science," said Tara Estlin of NASA's Jet Propulsion Laboratory, Pasadena, Calif. She is a rover driver, a senior member of JPL's Artificial Intelligence Group and leader of development for this new software system.

The new system is called Autonomous Exploration for Gathering Increased Science, or AEGIS. Without it, follow-up observations depend on first transmitting the post-drive navigation camera images to Earth for ground operators to check for targets of interest to examine on a later day. Because of time and data-volume constraints, the rover team may opt to drive the rover again before potential targets are identified or before examining targets that aren't highest priority.

The first images taken by a Mars rover choosing its own target show a rock about the size of a football, tan in color and layered in texture. It appears to be one of the rocks tossed outward onto the surface when an impact dug a nearby crater. Opportunity pointed its panoramic camera at this unnamed rock after analyzing a wider-angle photo taken by the rover's navigation camera at the end of a drive on March 4. Opportunity decided that this particular rock, out of more than 50 in the navigation camera photo, best met the criteria that researchers had set for a target of interest: large and dark.

"It found exactly the target we would want it to find," Estlin said. "This checkout went just as we had planned, thanks to many people's work, but it's still amazing to see Opportunity performing a new autonomous activity after more than six years on Mars."

Opportunity can use the new software at stopping points along a single day's drive or at the end of the day's drive. This enables it to identify and examine targets of interest that might otherwise be missed.

"We spent years developing this capability on research rovers in the Mars Yard here at JPL," said Estlin. "Six years ago, we never expected that we would get a chance to use it on Opportunity."

The developers anticipate that the software will be useful for narrower field-of-view instruments on future rovers.

Other upgrades to software on Opportunity and its twin, Spirit, since the rovers' first year on Mars have improved other capabilities. These include choosing a route around obstacles and calculating how far to reach out a rover's arm to touch a rock. In 2007, both rovers gained the know-how to examine sets of sky images to determine which ones show clouds or dust devils, and then to transmit only the selected images. The newest software upload takes that a step further, enabling Opportunity to make decisions about acquiring new observations.

The AEGIS software lets scientists change the criteria it used for choosing potential targets. In some environments, rocks that are dark and angular could be higher-priority targets than rocks that are light and rounded, for example.

This new software system has been developed with assistance from NASA's Mars Exploration Rover Project and with funding from the New Millennium Program, the Mars Technology Program, the JPL Interplanetary Network Development Program, and the Intelligent Systems Program. The New Millennium Program tests advanced technology in space flight. JPL, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover Project for the NASA Science Mission Directorate, Washington.

More information about the Mars rovers is online at: http://www.nasa.gov/rovers. More information about AEGIS is at: http://scienceandtechnology.jpl.nasa.gov/newsandevents/newsdetails/?NewsID=677.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

WISE Captures a Cosmic Rose


A new infrared image from NASA's Wide-field Infrared Survey Explorer, or WISE, shows a cosmic rosebud blossoming with new stars. The stars, called the Berkeley 59 cluster, are the blue dots to the right of the image center. They are ripening out of the dust cloud from which they formed, and at just a few million years old, are young on stellar time scales.

The rosebud-like red glow surrounding the hot, young stars is warm dust heated by the stars. Green "leafy" nebulosity enfolds the cluster, showing the edges of the dense, dusty cloud. This green material is from heated polycyclic aromatic hydrocarbons, molecules that can be found on Earth in barbecue pits, exhaust pipes and other places where combustion has occurred.

Red sources within the green nebula indicate a second generation of stars forming at the surface of the natal cloud, possibly as a consequence of heating and compression from the younger stars. A supernova remnant associated with this region, called NGC 7822, indicates that a massive star has already exploded, blowing the cloud open in a "champagne flow" and leaving behind this floral remnant. Blue dots sprinkled throughout are foreground stars in our Milky Way galaxy.

Berkeley 59 and NGC 7822 are located in the constellation of Cepheus at a distance of about 3,300 light-years from Earth.

Infrared light is color coded in this picture as follows: blue shows 3.4-micron light; cyan, 4.6-micron light; green, 12-micron light; and red, 22-micron light.

JPL manages the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. More information is online at http://www.nasa.gov/wise . Additional images are at http://wise.astro.ucla.edu .

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Cassini Shows Saturnian Roller Derby, Strange Weather

From our vantage point on Earth, Saturn may look like a peaceful orb with rings worthy of a carefully raked Zen garden, but NASA's Cassini spacecraft has been shadowing the gas giant long enough to see that the rings are a rough and tumble roller derby. It has also revealed that the planet itself roils with strange weather and shifting patterns of charged particles. Two review papers to be published in the March 19 issue of the journal Science synthesize Cassini's findings since arriving at Saturn in 2004.

"This rambunctious system gives us a new feel for how an early solar system might have behaved," said Linda Spilker, a planetary scientist and the new Cassini project scientist at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "This kind of deep, rich data can only be collected by an orbiting spacecraft, and we look forward to the next seven years around Saturn bringing even more surprises."

In the paper describing the elegant mess of activity in the rings, lead author Jeff Cuzzi, Cassini's interdisciplinary scientist for rings and dust who is based at NASA Ames Research Center, Moffett Field, Calif., describes how Cassini has shown us that collisions are routine and chunks of ice leave trails of debris in their wakes. Spacecraft data have also revealed how small moons play tug-of-war with ring material and how bits of rubble that would otherwise join together to become moons are ultimately ripped apart by the gravitational pull that Saturn exerts.

During equinox, the period when sunlight hits the rings exactly edge-on, Cassini witnessed rings that are normally flat - about tens of meters (yards) thick - being flipped up as high as the Rocky Mountains.

The spacecraft has also shown that the rings are composed mostly of water ice, with a mysterious reddish contaminant that could be rust or small organic molecules similar to those found in red vegetables on Earth.

"It has been amazing to see the rings come to life before our very eyes, changing even as we watch, being colorful and taking on a tangible, 3-D nature," Cuzzi said. "The rings were still a nearly unstructured object in even the best telescopes when I was a grad student, but Cassini has brought us an intimate familiarity with them."

Cuzzi said Cassini scientists were surprised to find such fine-scale structure nearly everywhere in the rings, forcing them to be very careful about generalizing their findings across the entire ring disk. The discovery that the rings are clumpy has also called into question some of the previous estimates for the mass of the rings because there might be clusters of material hidden inside of the clumps that have not yet been measured.

In the review paper on Saturn's atmosphere, ionosphere and magnetosphere, lead author Tamas Gombosi, Cassini's interdisciplinary scientist for magnetosphere and plasma science who is based at the University of Michigan in Ann Arbor, describes how Cassini helped scientists understand a south polar vortex that has a diameter 20 to 40 times that of a terrestrial hurricane, and the bizarrely stable hexagon-shaped jet stream at the planet's north pole. Cassini scientists have also calculated a variation in Saturn's wind speeds at different altitudes and latitudes that is 10 times greater than the wind speed variation on Earth.

According to Gombosi's paper, Cassini has also shown us that the small moon Enceladus, not the sun or Saturn's largest moon Titan, is the biggest contributor of charged particles to Saturn's magnetic environment. The charged particles from Enceladus, a moon that features a plume of water vapor and other gases spraying from its south polar region, also contribute to the auroras around the poles of the planet.

"We learned from Cassini that the Saturnian magnetosphere is swimming in water," Gombosi said. "This is unique in the solar system and makes Saturn's plasma environment particularly fascinating."

Of course, Cassini's intense investigation has opened up a host of new mysteries. For example, Cassini has shown us images of occasional cannon-ball-like objects that rocket across one of the outer rings known as the F ring, without many clues about where they came from or why they quickly disappear.

Learning more about a kind of radio emission known as "kilometric radiation" at Saturn has unsettled debates about the planet's rotation rate rather than settled them. While the regular periods of kilometric radiation have given scientists a sense of the rotation rate at Jupiter, Saturn has clocked different periods for the radiation during NASA's Voyager flybys in 1980 and 1981 and the nearly six years of Cassini's investigations. The modulations vary by about 30 seconds to a minute, but they shouldn't be varying at all. The inconsistency may be related to a source in the magnetic bubble around the planet rather than the core of the gas giant, but scientists are still debating.

"Cassini has answered questions we were not even smart enough to ask when the mission was planned and raised a lot of new ones," Cuzzi said. "We are hot on the trail, though."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL manages the project for NASA's Science Mission Directorate in Washington. The Cassini orbiter was designed, developed and assembled at JPL.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Surprise Shrimp Under Antarctic Ice

At a depth of 600 feet beneath the West Antarctic ice sheet, a small shrimp-like creature managed to brighten up an otherwise gray polar day in November 2009. Bob Bindschadler of NASA's Goddard Space Flight Center, Greenbelt, Md., remembers the day well. He and his team were on a joint NASA-National Science Foundation expedition to examine the underside of the ice sheet when they found the pinkish-orange creature swimming beneath the ice.

"We were like little kids huddling around, just oohing and aahing at this little creature swimming around and giving us a little show," said Bindschadler. "It was the thrill of discovery that made us giddy; just totally unexpected."

The complex critter was identified as a Lyssianasid amphipod, about three inches in length. It was found beneath the 180-meter (590-foot) thick Ross Ice Shelf in Windless Bight, 20 miles northeast of McMurdo Station. Bindschadler and his team drilled an eight-inch diameter hole through the ice so that Alberto Behar of NASA's Jet Propulsion Laboratory, Pasadena, Calif., could submerge a small camera to obtain what are believed to be the first images of the underbelly of an ice shelf.

"This is the first time we've had a camera able to look back up at the ice. This probe is an upgrade to the original. It has three cameras – down, side and back-looking. The back-looking camera saw the shrimp-like animal," said Behar. The drilling in Windless Bight was part of the team's preparation for upcoming field studies 1000 miles from McMurdo where the Pine Island ice shelf is rapidly thinning and Antarctic ice is swiftly sliding off the continent, raising sea level. Bindschadler and his team want to find out why.

Behar designed the original NASA borehole camera apparatus in 1999. It's now seen six deployments with British, Australian and American science teams in Antarctica, Greenland and Alaska. He'll take this new camera rig to Pine Island with Bindschadler and others, and hopes to eventually probe into Antarctica's mysterious sub-glacial lakes. There he'll attach a fiber-optically tethered micro-submarine with high-resolution camera, "so we can swim within the lake."

The rig, originally developed by NASA, has proven to be invaluable to science teams around the world. "We wouldn't be able to use it in the places we've gone without collaboration with the National Science Foundation and our British and Australian partners, among many others," said Behar. "When we get to Pine Island we'll be able to look at the sea floor. We couldn't do it this time because the cavity was deeper than we expected, but we'll have a kilometer of cable at Pine Island."

Polar Waters Thrive With Life

It's not unusual to find amphipods and other marine life in Antarctic waters. The complex circulatory system of the surrounding ocean brings warm, salty, nutrient-rich water towards the Antarctic continent, helping to sustain life even in the cold, dark winter. When the Larsen B ice shelf collapsed in 2002, scientists discovered clams and bacterial mats, or large aggregations of bacteria, half a mile below the ocean surface. Even within their average temperature range of -1.8 to 1 degree Celsius (28.7 to 33.8 Fahrenheit), Antarctic waters are teeming with life.

"The ocean flows under ice sheets, and where there is exchange of water with the open ocean, there will be microbes and other food resources for larger animals such as jellyfish and amphipods," according to Peter Wiebe, a biologist from the Woods Hole Oceanographic Institution in Woods Hole, Mass., who studies marine life in the waters around West Antarctica.

But for a group of glaciologists, a familiar face was the last thing they expected to see below the ice and so far from the open ocean. "We thought we were just going into a deep, dark cold water hole and never anticipated we'd see any life," Bindshadler added. "The color was what caught our eyes."

The science team -- with members from the University of Alaska, Fairbanks; the Naval Postgraduate School, Monterey, Calif.; and Moss Landing Marine Laboratories, Monterey -- is now analyzing temperature, salinity and current data from the sub-glacial watering hole to understand if the comfortable conditions for this shrimp-like creature are typical.

NASA-funded scientists have long studied life in extreme environments. From astrobiology to extremeophiles and survivophiles, the search for life in harsh places has led to a smorgasbord of discoveries seemingly ripped from the pages of science fiction. The Antarctic amphipod has gotten scientists talking again: if life-forms as complex as these can survive deep within sub-glacial waters could they survive in other unusual and unfriendly environments in space?

Behar, also known for his work on robotic exploration of Mars, remarked, "The real benefit of these exploration programs is that you go in not knowing what you're going to find and you get surprised. It makes it worth all the trouble putting everything together when you find something new that you didn't expect."

Preliminary findings and video footage will be presented today at the American Geophysical Union Chapman Conference on the Exploration and Study of Antarctic Subglacial Aquatic Environments in Baltimore, Md.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA's Spitzer Unearths Primitive Black Holes

NASA's Spitzer Unearths Primitive Black Holes

Astronomers have come across what appear to be two of the earliest and most primitive supermassive black holes known. The discovery, based largely on observations from NASA's Spitzer Space Telescope, will provide a better understanding of the roots of our universe, and how the very first black holes, galaxies and stars came to be.

"We have found what are likely first-generation quasars, born in a dust-free medium and at the earliest stages of evolution," said Linhua Jiang of the University of Arizona, Tucson. Jiang is the lead author of a paper announcing the findings in the March 18 issue of Nature.

Black holes are beastly distortions of space and time. The most massive and active ones lurk at the cores of galaxies, and are usually surrounded by doughnut-shaped structures of dust and gas that feed and sustain the growing black holes. These hungry, supermassive black holes are called quasars.

As grimy and unkempt as our present-day universe is today, scientists believe the very early universe didn't have any dust -- which tells them that the most primitive quasars should also be dust-free. But nobody had seen such immaculate quasars -- until now. Spitzer has identified two -- the smallest on record -- about 13 billion light-years away from Earth. The quasars, called J0005-0006 and J0303-0019, were first unveiled in visible light using data from the Sloan Digital Sky Survey. That discovery team, which included Jiang, was led by Xiaohui Fan, a coauthor of the recent paper at the University of Arizona. NASA's Chandra X-ray Observatory had also observed X-rays from one of the objects. X-rays, ultraviolet and optical light stream out from quasars as the gas surrounding them is swallowed.

"Quasars emit an enormous amount of light, making them detectable literally at the edge of the observable universe," said Fan.

When Jiang and his colleagues set out to observe J0005-0006 and J0303-0019 with Spitzer between 2006 and 2009, their targets didn't stand out much from the usual quasar bunch. Spitzer measured infrared light from the objects along with 19 others, all belonging to a class of the most distant quasars known. Each quasar is anchored by a supermassive black hole weighing more than 100 million suns.

Of the 21 quasars, J0005-0006 and J0303-0019 lacked characteristic signatures of hot dust, the Spitzer data showed. Spitzer's infrared sight makes the space telescope ideally suited to detect the warm glow of dust that has been heated by feeding black holes.

"We think these early black holes are forming around the time when the dust was first forming in the universe, less than one billion years after the Big Bang," said Fan. "The primordial universe did not contain any molecules that could coagulate to form dust. The elements necessary for this process were produced and pumped into the universe later by stars."

The astronomers also observed that the amount of hot dust in a quasar goes up with the mass of its black hole. As a black hole grows, dust has more time to materialize around it. The black holes at the cores of J0005-0006 and J0303-0019 have the smallest measured masses known in the early universe, indicating they are particularly young, and at a stage when dust has not yet formed around them.

Other authors include W.N. Brandt of Pennsylvania State University, University Park; Chris L. Carilli of the National Radio Astronomy Observatory, Socorro, N.M.; Eiichi Egami of the University of Arizona; Dean C. Hines of the Space Science Institute, Boulder, Colo.; Jaron D. Kurk of the Max Planck Institute for Extraterrestrial Physics, Germany; Gordon T. Richards of Drexel University, Philadephia, Pa.; Yue Shen of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass.; Michael A. Strauss of Princeton, N.J.; Marianne Vestergaard of the University of Arizona and Niels Bohr Institute in Denmark; and Fabian Walter of the Max Planck Institute for Astronomy, Germany. Fan and Kurk were based in part at the Max Planck Institute for Astronomy when this research was conducted.

The Spitzer observations were made before the telescope ran out of its liquid coolant in May 2009, beginning its "warm" mission.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. For more information about Spitzer, visit http://www.spitzer.caltech.edu/spitzer and http://www.nasa.gov/spitzer .

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

WISE Captures a Cosmic Rose

WISE Captures a Cosmic RoseA new infrared image from NASA's Wide-field Infrared Survey Explorer, or WISE, shows a cosmic rosebud blossoming with new stars. The stars, called the Berkeley 59 cluster, are the blue dots to the right of the image center. They are ripening out of the dust cloud from which they formed, and at just a few million years old, are young on stellar time scales.

The rosebud-like red glow surrounding the hot, young stars is warm dust heated by the stars. Green "leafy" nebulosity enfolds the cluster, showing the edges of the dense, dusty cloud. This green material is from heated polycyclic aromatic hydrocarbons, molecules that can be found on Earth in barbecue pits, exhaust pipes and other places where combustion has occurred.

Red sources within the green nebula indicate a second generation of stars forming at the surface of the natal cloud, possibly as a consequence of heating and compression from the younger stars. A supernova remnant associated with this region, called NGC 7822, indicates that a massive star has already exploded, blowing the cloud open in a "champagne flow" and leaving behind this floral remnant. Blue dots sprinkled throughout are foreground stars in our Milky Way galaxy.

Berkeley 59 and NGC 7822 are located in the constellation of Cepheus at a distance of about 3,300 light-years from Earth.

Infrared light is color coded in this picture as follows: blue shows 3.4-micron light; cyan, 4.6-micron light; green, 12-micron light; and red, 22-micron light.

JPL manages the Wide-field Infrared Survey Explorer for NASA's Science Mission Directorate, Washington. The principal investigator, Edward Wright, is at UCLA. The mission was competitively selected under NASA's Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp., Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA. More information is online at http://www.nasa.gov/wise . Additional images are at http://wise.astro.ucla.edu .

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Chopper Crash Test a Smash Hit

"Three, two, one, release," said the technician on the loudspeaker at the Landing and Impact Research Facility. With that countdown the helicopter smacked hard into the concrete. Its skid gear collapsed, its windscreen cracked open and its occupants lurched forward violently, suffering potentially spine-crushing injuries according to internal data recorders. The crash test was all in the name of research to try to make helicopters safer.

"The goal of any research program that has an element of impact dynamics is to develop an understanding of the crash response of the vehicle," said Karen Jackson, an aerospace engineer who oversaw the test. "Once we understand that response we can look at ways to improve the crash performance."

In December 2009 researchers dropped the same MD-500 at a similar angle from the same height of 35 feet (10.7 m). Inside were the same instruments that collected 160 channels of data and the same four crash test dummies. Three of the dummies were full bodies and one was a special torso model equipped with simulated internal organs. Technicians set up the same cameras to record the impact from inside and outside the helicopter.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Cassini Data Show Ice and Rock Mixture Inside Titan

Titan

By precisely tracking NASA's Cassini spacecraft on its low swoops over Saturn's moon Titan, scientists have determined the distribution of materials in the moon's interior. The subtle gravitational tugs they measured suggest the interior has been too cold and sluggish to split completely into separate layers of ice and rock.

The finding, to be published in the March 12 issue of the journal Science, shows how Titan evolved in a different fashion from inner planets such as Earth, or icy moons such as Jupiter's Ganymede, whose interiors have split into distinctive layers.

"These results are fundamental to understanding the history of moons of the outer solar system," said Cassini Project Scientist Bob Pappalardo, commenting on his colleagues' research. Pappalardo is with NASA's Jet Propulsion Laboratory in Pasadena, Calif. "We can now better understand Titan's place among the range of icy satellites in our solar system."

Scientists have known that Titan, Saturn's largest moon, is about half ice and half rock, but they needed the gravity data to figure out how the materials were distributed. It turns out Titan's interior is a sorbet of ice studded with rocks that probably never heated up beyond a relatively lukewarm temperature. Only in the outermost 500 kilometers (300 miles) is Titan's ice devoid of any rock, while ice and rock are mixed to various extents at greater depth.

"To avoid separating the ice and the rock, you must avoid heating the ice too much," said David J. Stevenson, one of the paper's co-authors and a professor of planetary science at the California Institute of Technology in Pasadena. "This means that Titan was built rather slowly for a moon, in perhaps around a million years or so, back soon after the formation of the solar system."

This incomplete separation of ice and rock makes Titan less like Jupiter's moon Ganymede, where ice and rock have fully separated, and perhaps more like another Jovian moon, Callisto, which is believed to have a mixed ice and rock interior. Though the moons are all about the same size, they clearly have diverse histories.

The Cassini measurements help construct a gravity map, which may help explain why Titan has a stunted topography, since interior ice must be warm enough to flow slowly in response to the weight of heavy geologic structures, such as mountains.

Creating the gravity map required tracking minute changes in Cassini's speed along a line of sight from Earth to the spacecraft as it flew four close flybys of Titan between February 2006 and July 2008. The spacecraft took paths between about 1,300 to 1,900 kilometers (800 to 1,200 miles) above Titan.

"The ripples of Titan's gravity gently push and pull Cassini along its orbit as it passes by the moon and all these changes were accurately recorded by the ground antennas of the Deep Space Network within 5 thousandths of a millimeter per second [0.2 thousandths of an inch per second] even as the spacecraft was over a billion kilometers [more than 600 million miles] away," said Luciano Iess, a Cassini radio science team member at Sapienza University of Rome in Italy, and the paper's lead author. "It was a tricky experiment."

The results don't speak to whether Titan has an ocean beneath the surface, but scientists say this hypothesis is very plausible and they intend to keep investigating. Detecting tides induced by Saturn, a goal of the radio science team, would provide the clearest evidence for such a hidden water layer.

A Cassini interdisciplinary investigator, Jonathan Lunine, said of his colleagues' findings, "Additional flybys may tell us whether the crust is thick or thin today." Lunine is with the University of Rome, Tor Vergata, Italy, and the University of Arizona, Tucson. "With that information we may have a better understanding of how methane, the ephemeral working fluid of Titan's rivers, lakes and clouds, has been resupplied over geologic time. Like the history of water on Earth, this is fundamental to a deep picture of the nature of Titan through time."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. JPL, a division of Caltech, manages the project for NASA's Science Mission Directorate in Washington. The Cassini orbiter was designed, developed and assembled at JPL. Cassini's radio science subsystem has been jointly developed by NASA and the Italian Space Agency (ASI).

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Historic Deep Space Network Antenna

Historic Deep Space Network AntennaLike a hard-driving athlete whose joints need help, the giant "Mars antenna" at NASA's Deep Space Network site in Goldstone, Calif. has begun major, delicate surgery. The operation on the historic 70-meter-wide (230-foot) antenna, which has received data and sent commands to deep space missions for over 40 years, will replace a portion of the hydrostatic bearing assembly. This assembly enables the antenna to rotate horizontally.

The rigorous engineering plans call for lifting about 4 million kilograms (9 million pounds) of finely tuned scientific instruments a height of about 5 millimeters (0.2 inches) so workers can replace the steel runner, walls and supporting grout. This is the first time the runner has been replaced on the Mars antenna.

The operation, which will cost about $1.25 million, has a design life of 20 years.

"This antenna has been a workhorse for NASA/JPL for over 40 years," said Alaudin Bhanji, Deep Space Network Project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "It has provided a critical lifeline to dozens of missions, while enabling scientific results that have enriched the hearts and minds of generations. We want it to continue doing so."

The repair will be done slowly because of the scale of the task, with an expected completion in early November. During that time, workers will also be replacing the elevation bearings, which enable the antenna to track up and down from the horizon. The network will still be able to provide full coverage for deep space missions by maximizing use of the two other 70-meter antennas at Deep Space complexes near Madrid, Spain, and Canberra, Australia, and arraying several smaller 34-meter (110-foot) antennas together.

NASA built the Mars antenna when missions began venturing beyond the orbit of Earth and needed more powerful communications tools. The Mars antenna was the first of the giant antennas designed to receive weak signals and transmit very strong ones far out into space, featuring a 64-meter-wide (210-foot) dish when it became operational in 1966. (The dish was upgraded from 64 to 70 meters in 1988 to enable the antenna to track NASA's Voyager 2 spacecraft as it encountered Neptune and Uranus.)

While officially dubbed Deep Space Station 14, the antenna picked up the Mars name from its first task: tracking the Mariner 4 spacecraft, which had been lost by smaller antennas after its historic flyby of Mars. Through its history, the Mars antenna has supported missions including Pioneer, Cassini and the Mars Exploration Rovers. It received Neil Armstrong's famous communiqué from Apollo 11: "That's one small step for man. One giant leap for mankind." It has also helped with imaging nearby planets, asteroids and comets by bouncing its powerful radar signal off the objects of study.

A flat, stable surface is critical for the Mars antenna to rotate slowly as it tracks spacecraft. Three steel pads support the weight of the antenna rotating structure, dish and other communications equipment above the circular steel runner. A film of oil about the thickness of a sheet of paper -- about 0.25 millimeters (0.010 inches) -- is produced by a hydraulic system to float the three pads.

After decades of constant use, oil has seeped through the runner joints, slowly degrading the structural integrity of the cement-based grout that supports it. Rather than continuing on a weekly schedule to adjust shims underneath the runner to keep it flat, Deep Space Network managers decided to replace the whole runner assembly.

"As with any large, rotating structure that has operated almost 24 hours per day, seven days per week for over 40 years, we eventually have to replace major elements," said Wayne Sible, the network's deputy project manager at JPL. "We need to replace those worn parts so we can get another 20 years of valuable service from this national treasure."

Over the next few months, workers will lay a new epoxy grout that is impervious to oil and fit the antenna with a thicker runner with more tightly sealed joints. They will then test that the rotation is smooth before turning the antenna back on again.

"The runner replacement task has been in development for close to two years," said JPL's Peter Hames, who is responsible for maintaining the network's antennas. "We've been testing and evaluating modern epoxy grouts, which were unavailable when the antenna was built, updating the design of the runner and designing a replacement process that has to be performed without completely disassembling the antenna. We've had to make sure we've reviewed it for practicality and safety."

JPL, a division of the California Institute of Technology in Pasadena, manages the Deep Space Network for NASA Headquarters, Washington. More information about the Deep Space Network is online at: http://deepspace.jpl.nasa.gov/dsn/index.html .

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA’s International Space Station Program Wins Collier Trophy

International Space StationThe International Space Station Program has won the 2009 Collier Trophy, which is considered the top award in aviation. The National Aeronautic Association bestows the award annually to recognize the greatest achievement in aeronautics or astronautics in America.

“We are honored to receive this prestigious award,” said Bill Gerstenmaier, associate administrator for NASA’s Space Operations Mission Directorate. “We're proud of our past achievements to build and operate the space station, and we're excited about the future- there's a new era ahead of potential groundbreaking scientific research aboard the station."

The International Space Station is a joint project of five space agencies and 15 countries that is nearing completion and will mark the 10th anniversary of a continuous human presence in orbit later this year. The largest and most complicated spacecraft ever built, the space station is an international, technological and political achievement that represents the latest step in humankind’s quest to explore and live in space.

Designated as a national laboratory by Congress in the 2005 NASA Authorization Act, the space station provides a research platform that takes advantage of the microgravity conditions 220 miles above the Earth’s surface across a wide variety of fields, including human life sciences, biological science, human physiology, physical and materials science, and Earth and space science.

Upon completion of assembly later this year, the station’s crew and its U.S., European, Japanese and Russian laboratory facilities will expand the pace of space-based research to unprecedented levels. Nearly 150 experiments are currently under way on the station, and more than 400 experiments have been conducted since research began nine years ago. These experiments already are leading to advances in the fight against food poisoning, new methods for delivering medicine to cancer cells and the development of more capable engines and materials for use on Earth and in space.

The international partner agencies – NASA, the Canadian Space Agency, the European Space Agency, the Japan Aerospace Exploration Agency and the Russian Federal Space Agency – provide control centers and support teams that train and launch crews to the station, provide support for systems operations and coordinate the on-orbit research 24 hours a day, 7 days a week, 365 days a year.

Now supporting a multicultural crew of six, the station has a mass of almost 800,000 pounds and a habitable volume of more than 12,000 cubic feet – approximately the size of a five-bedroom home, and uses state-of-the-art systems to generate solar electricity, recycle nearly 85 percent of its water and generate much of its own oxygen supply. Nearly 190 humans have visited the space station, which is now supporting its 22nd resident crew.

Boeing is the prime contractor, responsible for design, development, construction and integration of the ISS.

Upon completion of assembly later this year, the station’s crew and its U.S., European, Japanese and Russian laboratory facilities will expand the pace of space-based research to unprecedented levels. Nearly 150 experiments are currently under way on the station, and more than 400 experiments have been conducted since research began nine years ago. These experiments already are leading to advances in the fight against food poisoning, new methods for delivering medicine to cancer cells and the development of more capable engines and materials for use on Earth and in space.

The international partner agencies – NASA, the Canadian Space Agency, the European Space Agency, the Japan Aerospace Exploration Agency and the Russian Federal Space Agency – provide control centers and support teams that train and launch crews to the station, provide support for systems operations and coordinate the on-orbit research 24 hours a day, 7 days a week, 365 days a year.

Now supporting a multicultural crew of six, the station has a mass of almost 800,000 pounds and a habitable volume of more than 12,000 cubic feet – approximately the size of a five-bedroom home, and uses state-of-the-art systems to generate solar electricity, recycle nearly 85 percent of its water and generate much of its own oxygen supply. Nearly 190 humans have visited the space station, which is now supporting its 22nd resident crew.

Boeing is the prime contractor, responsible for design, development, construction and integration of the ISS.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Alternative Energy Crops in Space

Alternative Energy Crops in Space

What if space held the key to producing alternative energy crops on Earth? That's what researchers are hoping to find in a new experiment on the International Space Station.

The experiment, National Lab Pathfinder-Cells 3, is aimed at learning whether microgravity can help jatropha curcas plant cells grow faster to produce biofuel, or renewable fuel derived from biological matter. Jatropha is known to produce high quality oil that can be converted into an alternative energy fuel, or biofuel.

By studying the effects of microgravity on jatropha cells, researchers hope to accelerate the cultivation of the plant for commercial use by improving characteristics such as cell structure, growth and development. This is the first study to assess the effects of microgravity on cells of a biofuel plant.

"As the search for alternate energy sources has become a top priority, the results from this study could add value for commercialization of a new product,” said Wagner Vendrame, principal investigator for the experiment at the University of Florida in Homestead. "Our goal is to verify if microgravity will induce any significant changes in the cells that could affect plant growth and development back on Earth."

Launched on space shuttle Endeavour’s STS-130 mission in February, cell cultures of jatropha were sent to the space station in special flasks containing nutrients and vitamins. The cells will be exposed to microgravity until they return to Earth aboard space shuttle Discovery's STS-131 mission targeted for April.

For comparison studies of how fast the cultures grow, a replicated set of samples are being maintained at the University of Florida's Tropical Research and Education Center in Homestead.

"Watching the space shuttle go up carrying a little piece of my work is an indescribable experience," said Vendrame. "Knowing that my experiment could contribute to creating a sustainable means for biofuel production on Earth, and therefore making this a better world adds special value to the work."

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA's Kepler Mission Celebrates One Year in Space

NASA's Kepler Mission
One year ago this week, NASA's Kepler mission soared into the dark night sky, leaving a bright glow in its wake as it began to search for other worlds like Earth.

"It was a stunning launch," recalled former Kepler Project Manager James Fanson of NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Following Kepler's spectacular nocturnal launch from Cape Canaveral Air Force Station, Fla., aboard a United Launch Alliance Delta II rocket at 7:49 p.m. Pacific Time (10:49 p.m. Eastern Time on Friday, March 6, 2009, science team members whooped with joy.

"Now the fun begins," quipped an ecstatic William Borucki, Kepler's science principal investigator of NASA's Ames Research Center, Moffett Field, Calif.

Since the search began, NASA's plucky exoplanet hunter has achieved significant success in its quest to answer the timeless question: "Are we alone in our galaxy?" Two months ago today, Kepler scientists jubilantly announced the discovery of five large exoplanets (planets located beyond our solar system) named Kepler 4b, 5b, 6b, 7b and 8b.

The Kepler Mission is designed to observe more than 150,000 stars continuously and simultaneously for signs of Earth-size planets until at least November 2012. Some of the planets are expected to orbit in a star's "habitable zone," a warm region where liquid water could pool on the surface.

Kepler is a NASA Discovery mission. Kepler is managed and operated by NASA Ames, and Ames is the home organization of the Science Principal Investigator. Kepler development was managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Ball Aerospace & Technologies Corp., Boulder, Colo., developed the Kepler flight system.

Ball Aerospace and the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder, support mission operations. The final data archive is located at the Space Telescope Science Institute in Baltimore, Md.

More information is online at http://www.nasa.gov/kepler and http://www.kepler.nasa.gov.

Read more at http://www.nasa.gov/mission_pages/kepler/news/one_year_anniv.html

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Mars Orbiter Speeds Past Data Milestone

NASA Mars Orbiter

NASA's newest Mars orbiter, completing its fourth year at the Red Planet next week, has just passed a data-volume milestone unimaginable a generation ago and still difficult to fathom: 100 terabits.

That 100 trillion bits of information is more data than in 35 hours of uncompressed high-definition video. It's also more than three times the amount of data from all other deep-space missions combined -- not just the ones to Mars, but every mission that has flown past the orbit of Earth's moon.

"What is most impressive about all these data is not the sheer quantity, but the quality of what they tell us about our neighbor planet," said Mars Reconnaissance Orbiter Project Scientist Rich Zurek, of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "The data from the orbiter's six instruments have given us a much deeper understanding of the diversity of environments on Mars today and how they have changed over time."

The spacecraft entered orbit around Mars on March 10, 2006, following an Aug. 12, 2005, launch from Florida. It completed its primary science phase in 2008 and continues investigations of Mars' surface, subsurface and atmosphere.

The orbiter sports a dish antenna 3 meters (10 feet) in diameter and uses it to pour data Earthward at up to 6 megabits per second. Its science instruments are three cameras, a spectrometer for identifying minerals, a ground-penetrating radar and an atmosphere sounder.

The capability to return enormous volumes of data enables these instruments to view Mars at unprecedented spatial resolutions. Half the planet has been covered at 6 meters (20 feet) per pixel, and nearly 1 percent of the planet has been observed at about 30 centimeters (1 foot) per pixel, sharp enough to discern objects the size of a desk. The radar, provided by Italy, has looked beneath the surface in 6,500 observing strips, sampling about half the planet.

Among the mission's major findings is that the action of water on and near the surface of Mars occurred for hundreds of millions of years. This activity was at least regional and possibly global in extent, though possibly intermittent. The spacecraft has also observed that signatures of a variety of watery environments, some acidic, some alkaline, increase the possibility that there are places on Mars that could reveal evidence of past life, if it ever existed.

JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the spacecraft development and integration contractor for the project and built the spacecraft.

The Shallow Radar instrument was provided by the Italian Space Agency, and its operations are led by the InfoCom Department, University of Rome "La Sapienza." Thales Alenia Space Italia, in Rome, is the Italian Space Agency's prime contractor for the radar instrument. Astro Aerospace of Carpinteria, Calif., a business unit of Los Angeles-based Northrop Grumman Corp., developed the instrument's antenna as a subcontractor to Thales Alenia Space Italia.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Chilean Quake May Have Shortened Earth Days

Chilean Quake May Have Shortened Earth Days

The Feb. 27 magnitude 8.8 earthquake in Chile may have shortened the length of each Earth day.

JPL research scientist Richard Gross computed how Earth's rotation should have changed as a result of the Feb. 27 quake. Using a complex model, he and fellow scientists came up with a preliminary calculation that the quake should have shortened the length of an Earth day by about 1.26 microseconds (a microsecond is one millionth of a second).

Perhaps more impressive is how much the quake shifted Earth's axis. Gross calculates the quake should have moved Earth's figure axis (the axis about which Earth's mass is balanced) by 2.7 milliarcseconds (about 8 centimeters, or 3 inches). Earth's figure axis is not the same as its north-south axis; they are offset by about 10 meters (about 33 feet).

By comparison, Gross said the same model estimated the 2004 magnitude 9.1 Sumatran earthquake should have shortened the length of day by 6.8 microseconds and shifted Earth's axis by 2.32 milliarcseconds (about 7 centimeters, or 2.76 inches).

Gross said that even though the Chilean earthquake is much smaller than the Sumatran quake, it is predicted to have changed the position of the figure axis by a bit more for two reasons. First, unlike the 2004 Sumatran earthquake, which was located near the equator, the 2010 Chilean earthquake was located in Earth's mid-latitudes, which makes it more effective in shifting Earth's figure axis.

Second, the fault responsible for the 2010 Chiliean earthquake dips into Earth at a slightly steeper angle than does the fault responsible for the 2004 Sumatran earthquake. This makes the Chile fault more effective in moving Earth's mass vertically and hence more effective in shifting Earth's figure axis.

Gross said the Chile predictions will likely change as data on the quake are further refined.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA Radar Finds Ice Deposits at Moon's North Pole

NASA Radar Finds Ice Deposits at Moon's North Pole

Using data from a NASA radar that flew aboard India's Chandrayaan-1 spacecraft, scientists have detected ice deposits near the moon's north pole. NASA's Mini-SAR instrument, a lightweight, synthetic aperture radar, found more than 40 small craters with water ice. The craters range in size from 1 to 9 miles (2 to15 km) in diameter. Although the total amount of ice depends on its thickness in each crater, it's estimated there could be at least 1.3 trillion pounds (600 million metric tons) of water ice.

The Mini-SAR has imaged many of the permanently shadowed regions that exist at both poles of the Moons. These dark areas are extremely cold and it has been hypothesized that volatile material, including water ice, could be present in quantity here. The main science object of the Mini-SAR experiment is to map and characterize any deposits that exist.

Mini-SAR is a lightweight (less than 10 kg) imaging radar. It uses the polarization properties of reflected radio waves to characterize surface properties. Mini-SAR sends pulses of radar that are left-circular polarized. Typical planetary surfaces reverse the polarization during the reflection of radio waves, so that normal echoes from Mini-SAR are right circular polarized. The ratio of received power in the same sense transmitted (left circular) to the opposite sense (right circular) is called the circular polarization ratio (CPR). Most of the Moon has low CPR, meaning that the reversal of polarization is the norm, but some targets have high CPR. These include very rough, fresh surfaces (such as a young, fresh crater) and ice, which is transparent to radio energy and multiply scatters the pulses, leading to an enhancement in same sense reflections and hence, high CPR. CPR is not uniquely diagnostic of either roughness or ice; the science team must take into account the environment of the occurrences of high CPR signal to interpret its cause.

Numerous craters near the poles of the Moon have interiors that are in permanent sun shadow. These areas are very cold and water ice is stable there essentially indefinitely. Fresh craters show high degrees of surface roughness (high CPR) both inside and outside the crater rim, caused by sharp rocks and block fields that are distributed over the entire crater area. However, Mini-SAR has found craters near the north pole that have high CPR inside, but not outside their rims. This relation suggests that the high CPR is not caused by roughness, but by some material that is restricted within the interiors of these craters. We interpret this relation as consistent with water ice present in these craters. The ice must be relatively pure and at least a couple of meters thick to give this signature.

The estimated amount of water ice potentially present is comparable to the quantity estimated solely from the previous mission of Lunar Prospector’s neutron data (several hundred million metric tons.) The variation in the estimates between Mini-SAR and the Lunar Prospector’s neutron spectrometer is due to the fact that it only measures to depths of about one-half meter, so it would underestimate the total quantity of water ice present. At least some of the polar ice is mixed with lunar soil and thus, invisible to our radar.


"The emerging picture from the multiple measurements and resulting data of the instruments on lunar missions indicates that water creation, migration, deposition and retention are occurring on the moon," said Paul Spudis, principal investigator of the Mini-SAR experiment at the Lunar and Planetary Institute in Houston. "The new discoveries show the moon is an even more interesting and attractive scientific, exploration and operational destination than people had previously thought."

"After analyzing the data, our science team determined a strong indication of water ice, a finding which will give future missions a new target to further explore and exploit," said Jason Crusan, program executive for the Mini-RF Program for NASA's Space Operations Mission Directorate in Washington.

The Mini-SAR's findings are being published in the journal Geophysical Research Letters. The results are consistent with recent findings of other NASA instruments and add to the growing scientific understanding of the multiple forms of water found on the moon. The agency's Moon Mineralogy Mapper discovered water molecules in the moon's polar regions, while water vapor was detected by NASA's Lunar Crater Observation and Sensing Satellite, or LCROSS.

Mini-SAR and Moon Mineralogy Mapper are two of 11 instruments on the Indian Space Research Organization's Chandrayaan-1. The Applied Physics Laboratory in Laurel, Md., performed the final integration and testing on Mini-SAR. It was developed and built by the Naval Air Warfare Center in China Lake, Calif., and several other commercial and government contributors.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

NASA, NOAA Ready GOES-P Satellite for March 3 Launch

NASA, NOAA Ready GOES-P Satellite for March 3 Launch

NASA is preparing to launch the NOAA Geostationary Operational Environmental Satellite-P (GOES-P) on March 3 during a launch window from 6:18 to 7:18 p.m. EST from the Cape Canaveral Air Force Station, Fla.

Geostationary Operational Environmental Satellite-P, or GOES-P, is the latest in a series of meteorological satellites designed to watch for storm development and weather conditions on Earth. From its location in Earth orbit, GOES-P's state-of-the-art instrumentation will supply data used in weather monitoring, forecasting and warnings. It also will detect ocean and land temperatures, monitor space weather, relay communications and provide search-and-rescue support.

The satellite will be launched aboard a United Launch Alliance Delta IV vehicle from Launch Complex 37 at Cape Canaveral Air Force Station in Florida.

GOES-P, to be launched for NASA and NOAA, is a United Launch Alliance commercial launch for Boeing Launch Services under a Federal Aviation Administration license.

During close out procedures on the vehicle Friday, mission managers determined that a steering control valve on one of the solid rocket motors required removal and replacement. This additional work, in addition to the normal processing timeline, requires the launch to move one day.

The Flight Readiness Review for the launch of the Delta IV rocket with GOES-P was held on Feb. 25. The last evaluation, the Launch Readiness Review, will be held on March 2.

At Launch Complex 37, closeouts of the Delta IV and GOES-P are beginning. A launch countdown mission dress rehearsal was successfully completed Friday.

On launch day, the mobile service tower will be retracted away from the Delta IV at 7:30 a.m. The terminal countdown will begin when the countdown clock emerges from a planned built-in hold at 1 p.m.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS